DOI QR코드

DOI QR Code

A New Flow Equation for Thixotropic Systems

  • Sohn, Dae-Won (Department of Chemistry, Hanyang University) ;
  • Kim, Eung-Ryul (Department of Chemistry, Hanyang University) ;
  • Hahn, Sang-Joon (Department of Chemistry, Hanyang University) ;
  • Ree, Tai-Kyue (Department of Chemistry, The Korea Advanced Institute of Science and Technology)
  • Published : 1986.08.20

Abstract

Thixotropy is a time-dependent shear-thinning phenomenon. We derived a new thixotropic formula which is based on the generalized viscosity formula of Ree and Eyring, $f={\Sigma}\frac{X_i}{{\alpha}_i}sinh^{-1}$ () (Refer to the text concerning the notation.) The following is postulated: (1) thixotropy occurs when small flow units attached to a large flow unit separate from the latter under stress (2) elastic energy(${\omega}$) is stored on the large flow unit during the flow process, and (3) the stored energy contributes to decrease the activation energy for flow. A new thixotropic formula was derived by using these postulations, $f={\frac}{X_0{\beta}_0}{\alpha_0}{\dot{s}}+{\frac}{X_1{\beta}_1}{{\alpha}_1}{\dot{s}}+{\frac}{X_2}{{\alpha_x}}sinh^{-1}$[$({\beta}_0)_2$ exp $(-C_2{\dot{s}}^2/RT){\cdot}{\dot{s}}$] f is the shear stress, and s is the rate of shear. In case of concentrated solutions where the Newtonian flow units have little contribution to the viscosity of the system, the above equation becomes, $f=\frac{X_2}{\alpha_2}sinh^{-1}$[$({\beta}_0)_2$ exp $(-C_2{\dot{s}}^2/RT){\cdot}{\dot{s}}$]. In order to confirm these formulas, we applied to TiO2(anatase and rutile)-water, printing ink and mayonnaise systems. Good agreements between the experiment and theory were observed.

Keywords

References

  1. Trans. Soc. Rheol. v.1 H.A. Mercer;H.D. Weymann
  2. J. Colloid Interface Sci. v.40 J. Mewis;R. de Bleyser
  3. Rheology; Theory and Applications v.4 W.H. Bauer;E.A. Collins;F.R. Eirich(ed.)
  4. Ind. Eng. Chem. v.51 S.J. Hahn;T. Ree;H. Eyring
  5. NLGI Spokesman (Jour. Natl. Lubricating Grease Inst. v.23 S.J. Hahn;T. Ree;H. Eyring
  6. Biorheology v.16 G.B. Thurston
  7. J. Chem. Phys. v.74 R. Giordano;M.P. Fontana;F. Wanderlingh
  8. Rheology(Proc. VIIIth International Congress on Rheology, Naples, 1980) v.3 R. Lapasin;V. Longo;S. Rajgelj;G. Astarita(ed.);G. Marrucci(ed.);L. Nicolais(ed.)
  9. Rheol. Acta v.22 R. Lapasin;A. Papo;S. Rajgelj
  10. J. Non-Newtonian Fluid Mech. v.6 J. Mewis
  11. Trans. Soc. Rheol. v.15 D.D. Joye;G.W. Poehlein
  12. Nature v.253 J. Mewis;A.J.B. Spaull;J. Helsen
  13. Canad. J.Ch.E. v.48 R.A. Ritter;G.W. Govier
  14. Chem. Eng. J. v.10 V.V. Chavan;A.K. Deysarkar;J. Ulbrecht
  15. The Theory of Rate Processes S. Glasstone;K.J. Laidler;H. Eyring
  16. J. Appl. Phys. v.26 T. Ree;H. Eyring
  17. NLGI Spokesmman (the Journal of the National Lubricating Grease Institute) v.21 S.J. Hahn;T. Ree;H. Eyring
  18. Trans. Soc. Rheol. v.3 I.M. Krieger;T.J. Dougherty
  19. Brit. J. Appl. Phys. v.16 D.C-H. Cheng;F. Evans
  20. Brit. J. Appl. Phys. v.17 D.C-H. Cheng
  21. A.I.Ch.E.J. v.16 A.G. Fredrickson
  22. J. Korean Chem. Soc. v.15 K. Park;T. Ree
  23. Advances Chem. Phys. v.21 H. Utsugi;T. Ree
  24. Ann. Physik v.19 A. Einstein
  25. Fluid Mechanics L.D. Landau;E.M. Lifshitz
  26. Bull. Korean Chem. Soc. v.4 J.H. Bang;E.R. Kim;S.J. Hahn;T. Ree
  27. Journal of the Research Institute of Industrial Sciences, Hanyang University v.21 C.W. Lee;E.R. Kim;S.J. Hahn
  28. Industrial Rheology and Rheological Structures H. Green
  29. Advanced Engineering Mathematics(5th) E. Kreyszig
  30. J. Chem. Phys. v.79 B.C. Eu