Abstract
A nonlinear theory is presented for the fluctuations of intermediates in the Brusselator near the critical point caused by diffusion. The method used is the two time scaling method different from the conventional method in the sense that a slight nonlinear effect is included in the initial time region where the linear approximation is conventionally valid. The result obtained by the nonlinear theory shows that fluctuations close to the critical point approach the value of a stable steady state or deviate infinitely from an unstable steady state, as time goes to infinity, while the linear theory gives approximately time-independent fluctuations. A brief discussion is given for the correlation at a time between fluctuating intermediates when the system approaches a stable steady state.