DOI QR코드

DOI QR Code

Calculation of the NMR Cheimical Shift for a 4d$^1$ System in a Strong Crystal Field Environment of Trigonal Symmetry with a Threefold Axis of Quantization

  • Ahn, Sang-Woon (Department of Chemistry, Jeonbug National University) ;
  • Oh, Se-Woung (Department of Chemistry, Mogpo National College) ;
  • Ro, Seung-Woo (Department of Chemical Engineering, Chungju National Technical College)
  • Published : 1986.06.20

Abstract

The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a $4d^1$ system in a strong crystal field environment of trigonal symmetry, when the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. We observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R3) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around $R{\geqslant}0.2$ nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift.

Keywords

References

  1. Proc. Roy. Soc., Lond. v.A354 R.M. Golding;L.C. Stubbs
  2. Mol. Phys. v.31 R.M. Golding;R.O. Pascual;L.C. Stubbs
  3. Bull. Korean Chem. Soc. v.4 S. Ahn;S.W. Oh;E. Park
  4. J. Magn. Reson. v.46 R.M. Golding;R.O. Pascual;S. Ahn
  5. J. Magn. Reson. v.50 L.C. Stubbs;B.R. McGarvey
  6. J. Chem. Phys. v.53 B.R. McGarvey
  7. Pure Appl. Chem. v.32 R.M. Golding
  8. J. Chem. Phys. v.29 H.M. McConnell;R.E. Robertson
  9. J. Magn. Reson. v.2 R.J. Kurland;B.R. McGarvey
  10. Mol. Phys. v.24 A.D. Buckingham;P.J. Stile
  11. Mol. Phys. v.27 P.J. Stiles
  12. Mol. Phys. v.29 P.J. Stiles
  13. J. Magn. Reson. v.33 R.M. Golding;L.C. Stubbs
  14. J. Magn. Reson. v.58 R.M. Golding;R.O. Pascual;I.C. Hoare
  15. Mol. Phys. v.31 R.M. Golding;R.O. Pascual;J. Vrbancich
  16. Bull. Korean Chem. Soc. v.4 S. Ahn;E. Park;K.H. Lee
  17. Bull. Korean Chem. Soc. v.4 S. Ahn;E. Park;K.H. Lee
  18. Introduction to Ligand Field Theory C.J. Ballhausen
  19. Bull. Korean Chem. Soc. v.4 S. Ahn;H.C. Suh;K.H. Lee
  20. Bull. Korean Chem. Soc. v.7 S. Ahn;K.Y. Yuk;S.W. Ro
  21. J. Magn, Reson. v.8 B. Bleaney
  22. Aust. J. Chem. v.30 H.A. Bergen;R.M. Golding
  23. Mol. Phys. v.8 R.M. Golding
  24. Applied Wave Mechanics R.M. Golding
  25. Unpublished Thesis (Ph.D. University of New South Wales) L.C. Stubbs