DOI QR코드

DOI QR Code

Phase Transition and Approximated Integral Equation for Radial Distribution Function

  • Yoon, Byoung-Jip (Department of Chemistry, Kangreung National University) ;
  • Jhon, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1986.02.20

Abstract

A reduced condition for liquid-gas phase transition from the singularity of compressibility is derived using diagrammatic approach and is examined in the hard sphere system. The condition turns out that the Percus-Yevick and the Hyper-Netted-Chain approximation never conceive the idea of phase transition, and explains that the liquid-gas transition does not exist in hard sphere system. The solid-fluid transition is considered on the viewpoint of correlation function and diagrammatic analysis.

Keywords

References

  1. Equilibrium and Nonequilibrium Statistical Mechanics R. Balescu
  2. Statistical Thermodynamics of Simple Liquids and Their Mixtures T. Boublik;I. Nezbeda;K. Hlavaty
  3. Proc. Akac. Sci. v.17 L.S. Ornstein;F. Zernike
  4. Phys. Rev. v.110 J.K. Percus;H.J. Yevick
  5. Phys. Rev. Lett. v.8 J.K. Percus
  6. Physics v.25 J.M.J. van Leeuwen;J. Groenveld;J. de Boer
  7. Progr. Theoret. Phys. (Kyoto) v.23 T. Morita;K. Hiroike
  8. Progr. Theoret. Phys. (Kyoto) v.25 T. Morita;K. Hiroike
  9. Introduction to Liquid State Physics C.A. Croxton
  10. J. Phys. C. v.7 C.A. Croxton
  11. Rev. Modern Phys. v.48 J.A. Barker;D. Henderson
  12. Phys. Rev. v.145 N.W. Aschroft;J.Lekner
  13. J. Chem. Phys. v.23 B.J. Alder;S.P. Frenkel;V.A. Lewinson
  14. Phys. Rev. v.A5 L. Verlet;J.-J. Weis
  15. Statistical Mechanics D.A. McQuarrie
  16. J. Chem. Phys. v.63 D.Henderson;E. W. Grundke
  17. J. Chem. Phys. v.35 A.A. Broyles
  18. Australian J. Phys. v.21 R.J. Baxterr
  19. J. Chem. Phys. v.52 F. Mandel;R.J. Bearman;M.Y. Bearman
  20. Statistical Mechanics K. Huang
  21. J. Chem. Phys. v.54 J.D. Weeks;D. Chandler;H.C. Andersen