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ABSTRACT

By using the tool for finding influential cases in regression, we investigate the properties
of three types of diagonal elements of the hat matrix in central composite designs.
From these results, we determine the experimental points at axes and the number of
replicates at the center and the other points so that the experimental points give appr-

oximately same influences to estimate the response surface.

1. Introduction

Consider the general regression model
y=X3+e (1.1)

where, y is the nx1 vector of observed responses, X is #xp’ matrix, § is p’>1 vector
to be estimated and ¢ is an nx1 vector of random errors, with mean vector 0 and
covariance matrix J¢?. In the central composite design of the second order model in 2
independent variables, a scalar response, y, is determined by

Y= B By + BaXy+ BuX it + Bk’ + freXi¥ e (1.2)
énd the experimental points are illusirated in Figure 1.1, In general, the central comp-
osite design in % independent variables has 2* factorial, 2k axial points and a center
point. The center point may be replicated #, times and we shall allow the other points
10 be replicated » times.
* In this paper we consider the design aspects of response surface experiments in which

‘emphasis is on determination of the values of @ and the number of replicates, #n, and 7,
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Figure 1.1. Experimental points in central composite design for k=2

for various values of 2, Our purpose is to find designs which are insensitive to wild
observations and to violation of the usual normal theory assumptions.

Recently, Cook(1977), Andrews and Pregibon (1978), Belsley, Kuh and Welsch (1980)
and many other statisticians have provided the tools for finding influential cases in the
linear model by using sample versions of the influence curve. In this paper, we will
apply these results on regression for the central composite designs in the response surface
analysis.

Cook (1977) proposed the Cook’s distance D;, as a measure of influence of the ith case,
defined by

Di=r&va/{p 1—vi)}, i=1, -, n, (1.3)
where p’ is the number of parameters to be estimated including constant term, r,=¢,/
(6 V1—v:), (i=1,--+,m) is the Studentized residual, &,=y,— 3, F*=3eé2/ (n—p’) and
vii=x1 (X’X)'Ug,- (i=1,--,n) is the diagonal element of the hat matrix V=X
(XX)'X.

For fixed p’, the size of D; will be determined by two different sources: the magnitude
of 7;, a random variable reflecting the lack of fit of the model at the ith case, and the
distance of th evector x: from the average of the other data vectors as reflected by v
A large D; may be determined by large 7; or by large v or both. If we concentrate
our attention on the problem of designing experimental points, however, what we can
control between #; and v is only the value of v;. Therefore it is reasonable to find
designs in which the values of v;; are small and as close as possible.

Many authors have hinted the important role of »;;. Box and Draper (1975) suggested
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{hat for a designed experiment to be insensitive to outliers, the v:; should be small and
approximately equal. On the other hand, we know that the eigenvalues of a hat matrix
are either 0 or 1 and that the number of nonzzro eigenvalues is equal to the rank of the
matrix. In this case, rank(V)=rank(X)=p", thus the average of the v;; is p’/n. Hoaglin
and Welsch (1978) suggested that a reasonable rule of thumb for large v is v..>2p"/n.
Huber (1981) pointed out that values v;;<<0.2 appear to be safe, values between 0.2 and
0.5 are risky, and suggested that if we can control the design at all, we had better
avoid values above 0.5. The purpose of this paper, from these points of view, is now
focused on finding designs which satisfy the following conditions:

(a) v«’s are as close as possible.

(b) v,;<0.2, for all i. (1.4)

(¢) Replicates are as small as possible.

In Section 2 the optimum designs for two independent variables satisfying the condition (a)

in (1.4) are obtained. In Section 3 the optimum designs for general case are studied and
we recommend those designs satisfying the conditions in (1.4). In Section 4, remark(a)

are given.
2. OPTIMUM DESIGNS FOR TWO INDEPENDENT VARIABLES

2.1. Case when r=1

Throughout this paper, let #, be the number of replicates at the center point and »
be that at the other points. Then the number of cases, #, of the model in (1.2) is given
by n=n,+8 for a fixed 7.

For a given #,, the design matrix X in (1.2) is

1 -1 —1 1 1 1
1 —1 1 1 1 -1 ) ]
1 1 -1 1 1 —11] 4 2° factorial points
1 1 1 1 1 1
1 0 0 0 0 0 .
D € PPt n, center points 2.1
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1 —« 0 ot 0 0
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1 0 —a 0 @ 0 4 axial points
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and X' X is
n 0 0 f fi0
0 f 0i0 00
0o 0 fio0 00
X X |erernirereeseeneinens RN 2.2)
S0 0 h 4 10
f 0 0 4 h 0
0o 0 0 0 o0 @ 4
The inverse of X’X in (1.2) is
3 0 O =f/(nv) -/ )
: [
0 1/f N0 00
3 !
0 0 17 0 0 Lo
: 2.3
o -f/ invi 0 (4 t/w -u’/w | §] )
(XX = | |
-7 m 0 0 -u/w 17w |0
e e e L
0 0 0 0 T VA
|
where
n=mn,+8, f=2(a*+2), h=2(a'+2), t=h—r/n, 2.9

u=4—f2/n, v=t+u, s=1/n+2% (%), w=v{—u).
From the matrix in (2.3), we can derive the diagonal elements of V=X(X'X) X',

which can be classified into three types as follows:

Ver=1/(my+8) +1/4+1/(@*+2) + Qa2 —4—n,) /[ (n,+8) {(n,+4)a*—16a* +4 (1, +4) } ]

Vee=1/ (ny+8) +4(a?+2)2/ [ (1,+8) {(ny+4) ' — 1607 +4 (m,+4) }]

Vaa=1/(Mo+8) +a?/{2(a®+2) } + { (s +4) (1,4 6) a* —16 (n,+6) (2.5)
+2(1" +121,+48) 1/ [2(n,+8) { (e +4) a* — 160" +4 (1, +4) } ]

Note that the above vss, v.. and v.. are the diagonal elements of Vcorresponding to
2% factorial, center and axial points, respectively. Each v;; falls in the range between 0
and 1. Actually if we let ¢ be the number of rows in X that are exactly the same as
X, including x;, then

1/n<va<<1/c. (2.6)

Moreover, we can observe empirically the following.
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As a function of a, vsr is decreasing, while v.. is increasing 2.7
Jor any given n, less than 5,
Since ov../da=64fa(2—a?)/(n*v?) where f and v are those in (2.4), the following fact
holds.
As a function of a, v.. is concave downward with maximum 2.8)
value 1/n, at a= +2 for any given n,.
On the other hand, since vsr=v..=5/8 at a= 3 for all n, 0vs/on,=—Aa*(a2—2)
and .a/0m,=—A;(@*—2), where A=A (a,n,)>0 and A,=A,(a,n)>(, and since
OV.o/0m, <70 from v.. in (2.5), we have the following.
As a function of n,, v.'s are all decreasing for any give a 2.9
except that vy and v.. are constant at a= 73 for all n,.
Note that v.. is decreasing rapidly in #, and the decreasing rates of vss and v,. are very
little.

To find the values of a and #, which satisfy the condition (a) in (1.4) in the interest-
ing region, {a|0<a <3}, first we solve the minimization problem in (2.10) with respect
to a for a given #u, empirically.

Minimize |Vrr—Veal 4 [Vaa—Vee| +Vec—Vss|. 2. 10)

The solution of the above problem exists by the properties of v in (2.6) through

(2.9) and the results are as follows.

Table 2.1. Solutions for given n,

Mo @ min _ Uss Vec Vaa
1 1.751 0. 3608 0. 5665 0. 7468 0. 7468
2 V2 0. 2500 0. 6250 0. 5000 0. 6250
3 e 0. 5833 0. 6250 0. 3333 0. 6250

The solutions for #n,>3 are not necessary by the properties in (2.7) through (2.9).
Now from Table 2.1, we can conclude that the optimum design is given when a= +2
and #,=2 for the case when »=1, Note that v;’s are greater than or equal to 0.5 in

this case.

2.2 Cases when r>1

Now consider the optimum designs when the number of replicates, 7, is greater thanor
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equal to 2. Similarly to Section 2.1, we can find the matrices X’X and (X’ X) ! of
the same forms in (2.2) and (2.3) only except for 47 replacing 4. In this case, the
expressions of £,v,s and w in (2.4) are also unchanged but those of n, f,4 and u in
(2.4) and v:’s in (2.5) are changed to

n=n,+87, f=2r(a*+2), h=2r(a'+2), u=4r—[*/n, 2.11)
vrr=1/ (1, +87) +1/ (4r) +1/{r(a*+2)}
+ (2rat—4r —ny) 2/ [¥ (n,+87) { (ne+4r) a* —16va* + 4 (ny +47) 1 1,
Vee=1/ (o+87) +47 (a2 +2)2/ [ (1, +87) { (Mo +4r)a* —167ra* +4 (m,+47)} 1,  (2.12)
Vaa=1/ o+ 87) +a?/ {27 (a2 +2) } + {(1,+47) (1, 67) a* — 167 (1,1 67) o
+2(n? 12007 +487%) Y [ [27 (o +87) { (o +4r) a* —167a’ +4 (ny+47) } 1.
Investigating the equations in (2.12), we can find that the properties in (2.6) through
(2.9) are valid for given 7. To determine the values of « and #, for given 7, we obtained
Table 2.2 by solving the minimization problem in (2.10) with respect to a for given »

and #n, empirically.

Table 2.2. Solutions for given r and n,when k=2

r o a min Vsr Vee Vaa
2 1 1.967 0.2177 0. 2953 0. 4042 0. 4042
2 1.751 0. 1804 0.2832 0. 3734 0.3734

3* N 0. 0417 0.3125 0.3333 0.3125

VT 0. 1250 0.3125 0. 2500 0.3125

5 V7 0. 2250 0.3125 0. 2000 0.3125

3 3 1.751 0.1203 0.1888 0. 2489 0. 2489
1.594 0. 0760 0.1926 0. 2306 0. 2306

5* v 0. 0667 0. 2083 0. 2000 0. 2083

6 Ve 0.0833 0. 2083 0. 1667 0. 2083

4 5 1.636 0. 0675 0. 1430 0.1768 0.1768
6* Nk 0. 0208 0. 1563 0. 1667 0.1563

7 v 0. 0268 0.1563 0. 1429 0.1563

5 ! g* } N 0.0000 | 0.1250 0. 1250 0. 1250
6 | 107 \ Ja* 0.0083 | 0. 1042 0. 1000 0.1042

(*; optimum values of a and #n, for given 7)

Note that if we increase #u, for fixed 7, it becomes that v..<v;s and v..<v.., which is
due to the properties in (2.7) through (2.9).

The optimum designs satisfying the condition (a) in (1.4) for given 7 are obtained
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from Tables 2.1 and 2.2 and they are summarized in Table 2, 3.

Table 2.3. Optimum values of n, and a for given r

r ‘ 1 2 3 4 5 6
o 2 5 6 8 10
a vz V2 V2 vZ V7 V2

3. Optimum designs for general case
3.1. Diagonal elements of hat matrix

In the central composite design of the second order model in % independent variables,

the general regression model in (1.1) is represented explicitly by
k k k :
y=0+ X%+ Zﬂfixiz"*'i% X Biix:xite. 3.
Thus the number of cases # is
n=n,+2+2 kr (3.2)

The nxp’ design matrix X is of full column rank with p’:1+2k+(§>, and the sym-

metric matrix X' X is
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Thus the inverse of X’X is

3.4)
T - N
s : } SATRING. . . . {7 imo
0 I
1/f [ !
~ ! .
N | 0 |
0 SO l
1/1 : |
e
-f/ (v} : fv-u /w , 0
| - -u/w |
I ~
i ! ~ |
xx =] | o o .
I I S
l | -u/w \\\ |
-f/ (nv) ], (v-u /w |
———
) 1/(727) 0
[ AN
0 |0 S~ .
where
f=ra?+2%), h=rQa*+2%), t=h—f*/n, u=r2t—[/n, (3.5)

v=t+(k—1u, s=1/n+kf*/ (n%), w=v{—u).
From the inverse matrix in (3.4), we can derive the three types of diagonal elements
Vs, Vee and v,, of V=X(X'X)"X" as follows:
vir=1/n+ (% )/ 029 +RIf+R(f ) (i),
Vee==1/n+kf2/ (n*0), (3.6)
Vea=1/0+a?/f+ (2rkfP—d4rnfal+n*(v—u)} / (2rnPy),
where vs,v.. and v.. are those in Section 2. 1. The property in (2.6) is valid for this
case and the property in (2.7) is also valid for suitable #, » and #,. Moreover, the property
in (2.8) is valid for given k,7 and #n, except for a= 4% replacing a= v+, since OVce/
da=8r*k f2*a(k—a®) /(n*v?), where f and v are those in (3.5). The property in (2. 9)
is also valid for given k,7, and a except for @= 4% replacing a= + 2. The reason is
given below.
Clearly 9vec/om,<0. 0vss/0n,=—B,a*(a*—k)* and 0v../0n,=—B,(a*—k)?, where B,
=B,(k,7,1,0)>0 and B,=B,(k, 7,1y, 2)>0. At a= VE, vir={(k2—k)/(2**) + (k+1)
/(2k+2)} /7 and va.={1/2—1/(2k) + (k+1)/(2k+2*)} /r, which are independent of ;.
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Figure 3.1 shows the functional properties of vi's for the case when £=3.

Figure 3.1. Plots of v:’s as a function of a for k=3
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3.2. Optimum designs for general case

For the cases when £>3, the solutions of the minimization problem in (2.10) also
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exist by the properties of v;; in Section 3.1 and we solve it with respect to a for given

k,7 and n, empirically, which are written in Table 3.1 for the case when £=3.

Table 3.1. Solutions for given r's and n,'s (k=3).

14 ‘ o ‘ a ’ min Vs Vee Vaa
1 1* 2. 058* 0.1618 0. 6289 0. 7098 0. 7008
L2 1. 804 0. 3090 0. 6488 0. 4943 0. 6368
2 | 2.058 0. 0809 0. 3145 0. 3549 0. 3549
3* 1. 837* 0. 0015 0.3222 0. 3230 0. 3230
4 1.804 0. 1545 0. 3244 0. 2472 0. 3184
3 3 2.058 0. 0539 0. 2096 0. 2366 0. 2366
1 1.926* 0.0242 | 0.2116 0.2237 0. 2237
5 1.782 0. 0376 \ 0. 2174 0.1987 0.2105
4 5 1.963 0. 0249 0. 1580 0.1705 0.1705
6* 1.837% 0. 0008 0.1611 0.1615 0.1615
7 1.787 0. 0422 0. 1629 0.1418 0.1582
5 \ g ' 1. 877* 0. 0109 \ 0. 1189 0.1189 0.1134
6 9x 1. 837* 0.0005 |  0.1074 0.1077 0.1077

(*; optimum values of #, and « for given 7)

Table 3.2. Optimum values of n, and a for given r and k&

k 7 J My a min ‘ Vss Vee Vaa
2 | 1 2 NE 0. 2500 0. 6250 0. 5000 0. 6250
2 3 vz 0.0417 0.3125 0.3333 0. 3125
3* 5% V2 0. 0667 0. 2083 0. 2000 0. 2083
4 6 V2 0. 0280 0.1563 0. 1667 0. 1563
5 ey 0. 0000 0.1250 0. 1250 0. 1250
6 10 vz 0. 0083 0.1042 0. 1000 0.1042
3 1 2. 058 0.1618 0. 6289 0. 7098 0. 7098
2 3 1.837 0. 0015 0. 3222 0. 3230 0. 3230
3 1. 926 0. 0242 0.2116 0.2237 0. 2237
4% 6* 1. 837* 0. 0008 0.1611 0.1615 0.1615
5 1. 877 0. 0109 0.1189 0.1189 0.1134
6 | 9 1. 837 0. 0005 0. 1074 0.1077 0.1077
4 1.661 0. 1001 0. 6160 0. 6160 0. 5660
2 3 1.824 0. 0362 0. 2998 0. 2998 0. 2817
3* 5* 2. 058* 0. 0100 0.1929 0. 1979 0.1979
7 2 0. 0060 0. 1458 0. 1429 0. 1458
5 8 1. 877 0. 0109 0.1189 0.1189 0.1134
6 10 2.508 0. 0050 0. 0965 0. 0990 0. 0990
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\

k l 7 \ #o l fo ‘ min Vs Vee Vaa
5 1 2 2.070 0.1378 0.4616 0. 4616 0. 5305
2 3 1. 907 0. 0644 0. 2340 0. 2340 0. 2662
3% 5% 1.952* 0. 0428 0. 1554 0. 1554 0. 1768
4 6 1. 907 0. 0322 0.1170 0.1170 0.1331
5 8 1.934 0. 0257 0. 0934 0. 0934 0. 1062
6 1 2 2.215 0. 3475 0. 3320 0.5191 0.5191
2 5 2.162 0.1714 0.1652 0. 1652 0. 2510
3* 8* 2.211* 0.1142 0.1099 0. 1099 0. 1670
7 1 4 2.407 0.5188 0. 2215 0. 2280 0. 4809
2 8 2.407 0. 2594 0.1108 0.1140 0. 2405
3* 0 11* 2. 430%* 0.1732 0.0738 0. 0837 0. 1604
8 } 1 j 6 2. 640 0.6516 0. 1427 0.1599 0. 4686
2 4 13 2.623 0. 3256 0. 0714 0. 0735 0.2342
3* 20%* 2.617* 0.2170 0. 0476 0. 0477 0. 1561
9 1 11 2.834 0.7458 0.0893 0. 0893 0.4621
‘ 2 22 2.834 | 0. 3729 0. 1446 0. 0446 0. 2310
; 3* 33* 2. 834* 0. 2486 0. 0298 0. 0298 0. 1540

(*; recommendable values of 7, 7, and a)

As shown in Table 3.1, we have found the optimum values of #, and « for given
k(>3) and ». The overall results for 2<Ck<(9 are summarized in Table 3.2,

In Table 3.2, we recommended designs, the values of « and the numbers of replicates
at the 2* factorial and center points for given k&, that require a minimum number of
experimental points satisfying the conditions in (1.4). But the number #, of replicates
at the center point is considerable for £>>6. Fortunately, we can reduce the number
1, with small increase, indeed lessthan 0,01, of minimum value in (2.10) and without
change in the condition of v,;<<0.2. The following Table 3.3 shows the recommend-

able designs for various k, the number of independent variables, including the above

facts.
Table 38.3. Recommendable values of r, n, and a for various k
o2 | s e s e L | s 9
7 3 | 4 3 3 ‘ 3 3 3 3
N 5 6 5 5 3 4 4 5

a V2 | 1.837 2.058 | 1.952 ] 2.063 2.323 2.748 2.748
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4. Concluding remrks

To what extent, a response surface design should satisfy some good properties is

depending on circumstances. Our interest is retricted to the designs which are insensitive

to wild ovservations and to violation of the normal theory assumptions, and which

require a minimum number of experimental points. Thus, we have not considered those

designs which guarantee the simplicity of the covariance matrix of an estimated g, etc.

When k£>5, v..>vs for all values of », #, and «, which means that the axial points

are always more influential than the 2* factorial points. |herefore, finding the optimum

designs by letting the number of replicates at the axial points differently from that at

the 2* factorial points is considered more desirable in the sense that this method would

reduce the number of experiments. However, we leave it for a future study.
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