Vibration Control of Flexible Robot Manipulator

유연한 로보트 팔의 진동제어

  • Published : 1986.06.01

Abstract

An analytical and experimental investigation is made to the dynamic responese of a cantilever with a tip mass that models some of the basic phenomena involved in the response of a flexible manipulator with a tip mass on its free end under the given rotating motion. The system equation is derived from the Hamilton's principle on the basis of the Euler-Bernoulli hypothesis and an approximate solution is obtained from model analysis using Galerkin's method for the vibation response of the system subjected to a sudden stop after an impulsive rotation. Experiment was performed to verify the validity of the theoretical analysis. Results are given for the vibration amplitude of the free end with respect to tip mass ratio, non-dimensionalized rotating velocity, rotating angle and non- dimensionalized hub length. The rotating condition to minimize the vibration amplitude of the free end can be determined for the given basic paramenters.

Keywords