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Abstract

The focus of this paper is to develop the optimization procedures and analyze the complexi-
ties of the nonserial diverging branch systems in Dynamic Programming. The optimization
procedure of the system is developed such that it helps to reduce the computational demands
of the system. The complexity of the network is analyzed with the increasing number of nodes,
branches and their connectedness to the main serial system. Determination of the optimal set of
nodes for the main serial chain is also investigated.

1. Introduction

With the basic optimzation theory for the elementary nonserial systems by Aris et al. [1], the
research on the nonserial network systems has attracted many researchers in the field of dyn-
amic programming. Parker [8] considered production lines in a hardware manufacturing industry
as a nonserial network system that contains branches and loops. Wong and Larson [11] examin-
ed the design and operation of natural gas transmission pipelines with a diverging branch sys-
tem while Mays and Yen [6] applied the nonserial dynamic programming to a branched sewer
system with converging branch structures. Optimization procedures and the associated com-
plexity analyes for various types of loop structures are presented by Lee and Esogbue [5].
A dynamic programming approach to determine the optimum allocation of resources to the ac-
tivities in a project network 1s due to Robinson [10). Esogbue and Marks [2] studied several
project scheduling and resource allocation problems of the CPM-cost variety in which the preced-
ence relationships possess a nonserial structure.

Pope et al [9] presented a method for obtaining closed form solutions to nonserial dynamic
programming problems with quadratic stage returns and linear transitions. They provided para-
metric solution tables both for the convex and nonconvex return functions and utilize these tables
for the within stage optimizations.

In this paper, we present the optimization procedures and the complexity analysis for the
multi-diverging branch systems. The branches are classified into levels. An algorithm that ef-
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fectively reduces the computational demand is developed. This paper is concluded with the de-

termination of the optimal set of nodes that constitute the main serial chain. An illustrative ex-

ample problem is also presented.

2. Optimization of the Single Diverging Branch System

We will first discuss about the optimization of a single diverging branch system. The com-

putational demands of the procedure will also be analyzed. The examination of the multi-branch

structures will then be followed.

A single diverging branch system is shown in Figure 1. The stage transformations and return

functions for a main serial process (stage 1,...,s,....N) and for a branch (stages 11,...,Ml) are

defined as follows (see Nemhauser [7]):

xn*l:tn(l‘n,dn), n:1,...

Vnzrn(xn,dn), n:l,

lezt‘l(x*, dv)
Xm-1,0=tn1(m1, dn1),

Y1 =#m1 (Xm1, d1)

X M1 \L

dy ds \Ld \I/dl
X xN—lx X Xs-1 Xs--2 X 7 Xo
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% \I/ Jf J/
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Figure 1. A Single Diverging Branch System




The optimization of the diverging branch system thus can be formulated as in the following

mathematical form :

N M
max 2 rm(Hn da) T2 Fmi(m1, dmi)
di ..,dv 71 m=1
du,..,dm
S.t. Xn-1 =b(%, dn) n=1,....N
-1, 1 =tn1(Xm1, dm) m=1,...,. M

le :tsl(-xs, ds)
A€ Xn, Xml EXm1, dnE€EDn, dm €Dm1 for all m, n

In the above formulation, x, xm1, D, and Da1 are the constraint sets corresponding to the input
and decision variables.

Note that by repeatedly substituting the input state variables xm1, m=1,...,M using the
transition functions, the decision vector(du,..., du1) in the diverging branch is determined inde-
pendently of that in the main serial system. Therefore, the diverging branch can be optimized
as a serial system yielding the optimal branch return fy, (x,,) with the optimal decisions dn 1
(xm1) for m=1,..., M.

In the same manner, the decision vector(dh,...,ds-1) of the main serial process i1s independent
of that of the diverging branch. Thus, the main process can also be optimized as a senal sys-
tem yielding fi-1(x-1) at stage s-1 with dn{x) for n=1,...,s-1. At stage s, the two branch
returns (X)) and fi—1(xs—1) are combined with the stage return 7. The optimization of the
remaining stages are usual serial process.

Hence, the solution procedure for a single diverging branch system is given as follows:

1. Obtain the optimal branch return fi;{(xy,) by serial procedures.

2. Obtain (s-1) stage return fi-1{x-1) by proceeding stages 1,...,s-1.

3. At stage s, combine the branch return with the return from the main chain as

fg(xs):mdax[n(xs, do)+ for(ts (o, ds)+ (ks di))]

4. Obtain the optimal system return fy (xy) by proceeding stages s+ I,..., N.
The procedure repeatedly substitutes the stage return function with the one at the previous stage
by employing the backward recursive equations. Computationally, it solves the recursive equa-
tion for each feasible state x» by evaluating and selecting the decision that maximizes the com-
puted return. In this manner the algorithm examines all the feasible states in each succeeding
stage until the final stage is analyzed. The maximum cumulative total return among the feasi-
ble states in the terminal stage then gives the optimal system return. Thus, the diverging branch
system 1s optimized with no more effort than the same sized serial system. The computational
storage demand at each stage i1s one dimensional. For more detailed algorithm description see

Lee [4].
3. Complexity Analysis of the Single Diverging Branch System

We examine the space and computational complexities of the single diverging branch algorithm
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which is given in the previcus section.
3.1 Space Complexity

To analyze the storage demand for the optimization of the single diverging branch system.
We assume that the input and decision variables are integer-valued with the following lower
and upper bounds :
L €£xa=Us, n=1,..N
Lot Exm1EUn, m=1,...,.M.

We also define K» and Ka1 as follows:
Ke=Un—Lz+1, Kmi=Un1—Lm1+1

Now, to simplify our notation in the complexity analysis we define the maximum discretiza-
tion levels K and K1 as

K:m(l,),cKn, Klzn'fnamel.
Then, when we apply an exhaustive optimum searching method at each stage, the computa-
tional storage requirement of the single diverging branch system becomes
(M+2)Ki+(N+2) K (1
The above storage demand 1s itemized as follows:

1) To store the optimal decision for each input value at each of the M+ N stages the proce-
dure requires MK+ NK memory space.

2) The computation of the optimal branch return requires 2K1 memory space; Two storage
spaces of size K1 are repeatedly used in successive stages. The optimal ml-stage return fm1
at stage ml will be stored at one memory space by adding the immediate return rm1 to the
return fw -1,1 which is stored at the other memory space.

3) To compute the optimal returns recursively at the main serial system the procedure needs
2K space.

If we assume Ki1=K, then the total storage requirement for this single diverging branch
system becomes

(M+ N+ 4)K. (2)

3.2 Computational Complexity

The computational complexity is investigated by the number of elementary operations (addition
and comparison) in the optimization procedure of the diverging branch system.

Notice that the optimization of the single diverging branch system has the same recursive
equation as in the serial system except at the junction stage s By assuming P and K discreti-
zations of the decision and state variables respectively, the diverging branch algorithm needs PK
comparisons at stages 11 and 1 of the system. No addition operations are performed at the
stages. At stage s, two additions and one comparison are made for each discretized value of
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xs and d.. Thus, stage s has 2PK additions and PK comparisons. All other stages have PK ad-
ditions and PK comparisons. Therefore, the total number of operations required for the optimiza-
tion of a diverging branch system is given as follows:

number of additions ; (N+M-1)PK

number of comparisons ; (N+ MPK

total number of operations; 2(N+M)-1)PK

This illustrates that the computational burden to solve a diverging branch system is linear to

e number of stages in the main chain and the branch.

Table 1. Computational Demands of the Single Diverging Branch System—
CPU Time in Seconds and Storage Words (numbers in the parentheses)

N =Number of stages in M=Number of stages in the diverging branch

the main senal system 3 8 13 18
5 176 (120) - 214 (170) - 250 (220) -291(270)
10 - 237 (170) - 272 (220) - 316 (270) - 350(320)
15 - 308 (220) - 339 (270) - 381 (320) - 420(370)
20 -361 (270) - 398 (320) - 438 (370) - 482 (420)

Here, by implementing the optimization procedure into a FORTRAN code and running on the
CYBER 170/855 at Georgia Institute of Technology, we illustrate the computational demands of
the diverging branch system. The operating system was NOS, and the code was compiled us-
ing the FTN compiler in the OPT-2 optimizing mode. The code was run in BATCH mode from
a time sharing terminal. Solution times were determined using the CDC timing routine SECOND.
A set of problems with different number of stages both in the main serial process and in the
diverging branch was solved. Table 1 shows the CPU time in second and the storage require-
ment (numbers in the parentheses) which is computed from the Equation (2) for each problem.
In each case ten discretizilions for all the input varibles were used.

For a fixed value of N, the CPU time increase 1s approximately linear to the number of stages
i1 the diverging branch. The increase is also linear with respect to the number of stages in the
main serial process for a fixed value of M.

4. Multi-Diverging Branch System

A multi-diverging branch system 1s shown in Figure 2. The system has D different diverging
branches. Each branch has M«(k =1,.., D)stages and diverges from a stage s of the main serial chain.
For the time being, to simplify our analysis we assume S, S for any two different branches
kand k'
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Figure 2. A Multi-diverging Branch System

As discussed in the single diverging branch system, the decisions at one diverging branch are
independent of those in the main serial process and the other branches. As a consequence of
this important fact, any multi-diverging branch system can be optimized as a one dimensional
serial process (the optimal n-stage return function is represented with the input state variable
xn) regardless of the number of branches of the system. Hence, the optimization procedure for
the single diverging branch system can be extended to this multidiverging branch structure.

However, the computational storage demand of this multidiverging branch system may be
largely affected by the order of optimization. The importance of the order in which the subsys-
tems should be optimized is well discussed in [3]. In relation to the multi-diverging branch sys-
tem of Figure 2, Lee [4] considers the following two approaches.

The first approach optimizes the branches first with the optimal branch returns and decisions.
Each branch return is then combined to the main serial process at the corresponding diverging
stage s, of the branch. In this case. due to the memory of the optimal return of each bran-
ch the storage demand increases with the number of branches in the system.
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The second approach for the multi-diverging branch system optimizes each diverging branch
and combines the optimal branch return when the optimization procedure for the main serial
process has reached the corresponding diverging stage s, of branch k. Thus, starting from the
stage 1 of the main serial process, the optimization procedure continues as a serial process if a
stage has no diverging branch. If a stage has a diverging branch, however, then the branch is
optimized and the branch return is combined to the return from the main serial chain. This
procedurc effectively reduces the memory space required by the first approach to store the
optimal return of each branch. When one branch return is combined at the corresponding  di-
verging stage, the memory space used for the branch is successively used for the other branches.

However, a close examination reveals that the branches that do not diverge from the main
serial system and that diverge from an identical node of the main trunk increase the complexity
of a multi-diverging branch system. To generalize our analysis, we consider a more complex
multi-diverging branch system as shown in Figure 3. We identify the branches as follows :

Branches of level 1: Branches that diverge from main serial chain (the branch of level 0).

Branches of level i: Branches that diverge from branches of level i-1.

In Figure 3, branches 1, 2 and 3 are classified as level 1, while branch 4 belongs to level 2.

Now, we consider the order of optimization. Clearly, any branch of each level can be treated
as If it diverges from the main serial chain. In other words, when we optimize a branch of level
¢ for 7=1,...,L, the branch of level i—1 is considered as the main serial chain. Hence, any
complex multi-branch system can be examined as if it is a single level branch system (a system
that has only branches of level 1).

My P>--- 4 +—>

M3 -~ 43 Pp---H 13 —>

ML P 11

M2 oo o 12 +—

Figure 3. A Complex Multi-diverging Branch System



The optimization procedure starts from a branch of level L-1 that has branches of highest
level L. If a branch of level L-1 has no diverging branches, then the branch is optimized when
the procedure treats branches of level L-2. Otherwise, the branch of level L is combined into
the branch of level -1 as in the single diverging branch algorithm. This procedure continues until
the optimization reaches the main serial chain of the system. The optimization algorithm for the
complex multi-diverging branch system is now presented. The flowchart of the algorithm is
shown in Figure 4.

Initialization
n; = # of branches of level 7 i =1,...., L
7n;; = # of branches of level i that diverge
from branch j of level (i 1), j=1,..... iy
Let ¢ «—— L.

Let i «— i—1
j— 0

1< 0

Yes

Optimize the current branch ; of level 7 from the first to the last stage. If a stage
has branches of level ¢+ 1, then optimize the branches and combine the optimal branch
returns at the stage. Otherwise, optimize the stage return function and proceed to the
next stage.

J

Figure 4. Flowchart of the Multi-di/verging Branch Algorithm




Multi-Diverging Branch Algorithm

Initialization: Let # be the number of branches of level 7 for 1=1,...,L and #j be the
munber of branches of level 7 that diverge from branch j of level i—1, j=1,..., ni-1.
Let i= L.

Step 1: Replace 7 with 7—1 and let j=0. If /<0, then stop. The optimal system return 1s
on hand. Otherwise, go to step 2.

Step 2: Replace j with j+ 1. If j>ni, then go to step 1. Otherwise, If #i+1,;-0 then repeat
this step. If %i+1,, >0 then go to step 3.

Step 3: Optimize the branch j of level 7 from the first stage to the last one. If a stage has
branches of level 7+ 1, then optimize the branches and combine the optimal branch returns at
the stage. Otherwise, optimize the stage return function and proceed to the next stage. Go to

step 2.

Consider a branch of level 7 that diverges from branch 7 of level 7—1. If the branch of level
¢ has no branches diverging from it, then the branch is optimized when the procedure reaches
the diverging stage of the branch j The optimal return of the branch of level 7 is ahbsorbed
directly into branch j of lower level. However, when many branches are diverging from an
identical stage of branch j then the optimal returns need to be stored before they are com-
bined to the lower branch. Now, if the branch of level i has branches of level 7+1 that diverge
from 1t, then the combined branch return needs to be stored to be absorbed into the branch of
level 7 -1. Thus, branches of level 7 that have branches of level i+1 and that diverge from an
identical stage of the lower branch j require additional memory space (memory space required
i addition to those for the optimal decisions and’ computation of the stage returns) to store the

optimal branch return.

5. Sensitivity to the Complexity of Diverging Branches

When we apply the optimization procedure given in Section 4, a multi-diverging branch system
calls for additional memory space.
We define
ui;= number of branches of level 7 that diverge from branch j of level 7 —1 and that
have branches of level /+1
vij= maximum mumber of branches of level 7 that diverge from an identical stage of
branch j and that have no branches of level ;+ 1.
Then the additional memory space to store the branch return in the multi-diverging branch
system 1s determined by
Z=max | max(uij+ vii—1) | (3)
1<i=L 1<j<n,,
where L is the highest level of the branches in the system and ni-1 is the number of branches
of level 7 —-1. Since the main chain is considered as the only branch of level 0, we let no=1.
The additional memory space for branches of level 7 that diverge from branch j is given by
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wij+vi—1. The last branch that is to be combined to an identical stage of the lower branch j
does not need the additional space. It is absorbed directly into the lower branch. Also note that
the memory space used at one level is also used for the other level. More specifically, the me-
mory space used.for branches of level { that diverge from branch j of level i—1 is successively
used for branches of level 7 that diverge from another branch. Therefore, the maximum storage
space required for branches of one level that diverge from a lower branch determines the addi-
tional memory space for the multi-diverging branch system. Hence, if we assume K as the
maximum discretization of all the input variables, then the space complexity of the multi-diverg-
ing branch system is analyzed as follows:

1) To store the optimal decisions for K discretizations of the input vanable at each stage, the

D
procedure needs K (3 M+ N) memory space.
K=

2) The recursive computation of the stage returns at the main serial process requires 2K
memory space.

3) Anocther 2K memory space is required to compute the optimal branch returns. This memory
space is repeatedly used for all branches in a system by applying the optimization algorithm in
Section 4.

4) Additional KZ memory space is required to store the optimal branch return.

Thus, the complexity of the multi-diverging branch algorithm is given by
K( k% Mi+ N+Z+4). (4)
=1

In this study, the stages in the main serial process and the diverging branches are known
before the optimization phase. In Section 6, we will discuss in detail the determination of the
optimal set of nodes that contitute the main serial chain in a multi-diverging branch system.

6. Determination of the Best Main Serial Chain

In previous sections we have analyzed diverging branch systems, where the stages in the main
serial chain as well as those in the branches are known before the optimization phase. However,
when we deal with real world systems, it is probable that we need to decide the set of nodes
(stages) that constitute the main serial system and branches. This calls for the segregation of a
network system into subsystems such that it minimizes the computational storage demands for
the optimization of the given network.

The optimization scheme for a multi-diverging branch system results in the following storage
demand for a system with D different diverging branches:

D
K(X Mi+ N+ Z+4) (5)
k=1

with Z = max | max (wi+vi—1) }, (6)
1<i<L  1<jSn,.

where Z represents the maximum number of branches that requirés one dimensional memory
space to store the optimal branch return.




The above analysis 1s for a system where the stages of the main serial chain and the branches
are known previously. We are now interested in determining the sets of nodes for the main
trunk and branches such that the computational storage demand for the optimization of the
system is minimized. Let Ni and Z: be respectively the number of stages in the main serial
system and the corresponding value of Z when branch £ is taken as the main serial process.

Then Equation (5) becomes
D+1

K( Y M+N+Z+4). (7)
k=1, =!

In Equation (7) the unknown main serial system is considered as another branch.

Definition. A set of nodes for the main serial system is said to be optimal, if it minimzes the
storage demand for the optimization of a given nonserial network system.

Now, the following theorem holds to minimize the storage demand in the optimization of a
multi-diverging branch system.

Theorem. Given a multi-diverging branch system with D2 +1 branches (including one main serial
chain), if the input states of the system are discrete, then the optimal set of nodes for the main

serial system is determined by a branch [ * such that

Zpe=min [ max | max - (uytvs=1)i] ®)
[ 1=l 1=7=5n,,

Proof. Let the maximum discretization level of the input states be K, then the storage dem-

and for the optimization of a multidiverging branch system with D+1 branches is given by
D+1
Equation (7). In the equation, since the total number of stages, 2, M+ N, of the system is
N

4 3 2 1 >
— 15 14 9 8 7 6 5 >
12 11 10 >
13 >

Figure 5. An Example of Multi-Diverging Branch System



fixed, the computational storge demand is dependent on Zi. Therefore, from Equation (6), Equa-
tion (8) results. This completes the proof.

We will illustrate this theorem with the following example :

Example Consider a multi-diverging branch network given in Figure 5. The following
four sets of nodes can be considered for the main serial system:

Si1=11, 2 3, 4, 14, 154,

S2=15, 6, 7, 8 9, 14, 15},

Sa= 110, 11, 12, 9, 14, 15},
and Sa= {13, 12, 9, 14, 15}

If we select Sz as the main chain, then we have #11=1 and »11=1 which leads to Z=1
However, by taking Ss3, we have #n= 0 and vuu=1 with Z=0. Table 2 gives the computa-
tion for each set of nodes for the main serial chain. Clearly, the optimal set of nodes for the
main serial system is given by

Ss=110, 11, 12, 9, 14, 15}
or Se= 113, 12, 9, 14, 15}.
By taking Ss or Ss as the optimal set of nodes for the main serial system, we see that all the

branches diverge from the main serial trunk.

Table 2. Determination of the Optimal Set of Nodes for the Main Serial
System in the Multi-Diverging Branch System of Figure 5.

! St Vi uij Zi :IZZL{ 1§;n£:,,1(uij+ vi;— D}
1 St un=1 vi1=1 1
un=1 va1=1
2 Sz ur=1 vii=1 1
Sa u11=90 vii=1 0*
4 S u1=90 vii=1 0*

*represents the optimal case.

7. Conclusion

For the single diverging branch system, it is shown that the amount of memory space and
the computing time increase linearly with respect to the number of stages either in the main
chain or in the branch. For the multi-diverging branch system, an optimization procedure that
effectively reduces the required storage demand is developed by classifying the branches into
levels.

Finally, the sets of nodes that constitute the main serial chain and branches are examined
based on the complexity analysis of the systems. The determination of the main serial system




is proved to be dependent on the number and the connectedness of the branches. To aid in the

efficient analysis of more complex branch systems, one needs to consider the optimization of the

multi-converging branch system. This issue is taken up in a forthcoming paper.
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