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Abstract

The effects of goal setting in the context of Multiple Criteria Decision Making (MCDM) are
classified into two types:internal and external. In the internal models, the impact of the changed
goal is limited only to the other goals in MCDM model. By contrast, in the external models, the
impact is limited to the factors not included in the MCDM model. In fact, most real world ex-
amples of goal setting have the nature of mixed models. To assist in the goal setting process,
the framework named Goal Setting Support (GSS) is developed. The GSS helps decision-makers
for mixed models to 1) make internal trade-offs in a way that guarantees non-dominancy after
the trade-offs, and 2) evaluate achieved goals systematically. The GSS can be used in creating

Decision Support Systems that will allow interactive goal setting.

1. Introduction

Setting goals wisely is a very important part of managerial decision making. When there exist
some structural relationships among various objectives, goal setting should be undertaken in the
context of Multiple Criteria Decision Making (MCDM). Of the several types of MCDM, thisre-
search particularly focuses on Multiple Objective Decision Making (MODM) problems as formulat-
ed in (1) — (2).

maximize [A(X), f2(X), ..., fm(X)] (1)
X
subject to
XecC @
where X - decision variable vector, fi(X): continuous objective function ¢, and

C=1 X|gX)=b,j=1...,m}: aconvex set.

We assume that the goal setting process is an adaptive process which requires information
about
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1) the impact of a certain goal on the other goals, in the form of marginal rate of substitu-
tion, and

2) evaluation of currently achieved goals in comparison with reference values.

Tho objective of this research is therefore to develop” a framework namely, the Goal Setting
Support (GSS) process that can facilitate the adaptive goal setting process.

The remaining sections are organized as follows. Section 2 Investigates the effects of goal set-
ting in MCDM, and section 3 develops a way to generate an Efficient Marginal Rate of Sub-
stitution (EMRS) that guarantees a non-dominated solution after trade-offs. Sections 2 and 3 are
thus primarily concerned with generating alternative solutions via trade-offs. Section 4 deals with
evaluation of goals, and section 5 finally synthesizes the framework of GSS by integrating the
notions and techniques developed in the previous sections. Section 6 provides an illustrative
example.

2. Effects of Goal Setting in MCDM

The impacts of goal setting can be categorized into two mutually exclusive types : internal, in
which the impacts of a goal are limited only to the other goals included in the MCDM model
and exfernal, in which the impacts of a goal are limited only to the factors not included in the
MCDM model.

2.1. Internal Model

Figure 1. Conflicting Objectives



In the Internal Model, if the goal of an objective fi(X),is changed, the change affects only the
other goals fi(X), i=1,..., %k % p in the model (1) = (2). Suppose a simple example in Figure 1
which maximizes two linear objective functions with linear constraints. In the case diagrammed
in Figure 1, the initial goal of fu() is set at uo* Under these circumstance, the optimal goal of
£1() can be found at the non-dominated point X1 To improve f2() from uy° to the us level, X1
should move toward X, along the boundary line, which results in diminishing A1() by du1. In

this case, the accomplishment of A(.) and f2() are conflicting with each other.

t AQ)
X2 f2() \ \

Figure 2. Complementary Objectives

In the case shown in Figure 2, however, the initial goal of fo() is #2’ at point Xi*, and the
£() can be improved while the f2() is improved without cost up to the point X2*. In this case,
the accomplishment of fi() and f2() are complementary with each other. Complementary objec-
tives imply that the current solution is a dominated solution. To enhance the goals, the dominat-
ed solution should be identified and moved to a non-dominated solution. The issue of finding
non-dominated solutions under complementary objectives is handled in the next section.

2.2. External Model

In other cases, the impacts of a goal change are limited to the external factors(such as costs)
that are not included in the MCDM model; such cases are examples of the External Model. For
example, to expand the goal of plant capacity, we may need actual investment, which may be
represented by a step-function as in Figure 3. If we compare the actual cost with the shadow




price curve of the goal constraint (which could have been acquired by parametric programming,
again as in Figure 3), we can easily identify the upper and lower bounds of beneficial invest-
ment, as well as the amount of investment that maximizes the actual benefit, represented as

(shadow price — actnal cost).

2. 3. Mixed Model

Cases in which the impacts of a goal change are both internal and external may be classified
under the Mixed Model. Most real world decision-making takes place under Mixed Model cir-

cumstances.
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3. Generation of Efficient Marginal Rate of Substitution

This section describes a process by which the Marginal Rate of Substitutions (MRS) are gener-
ated from the model specifications rather than from information provided by the decision-maker
(DM), on which the method of Geoffrion {5] and Interactive Goal Programming [3] are depend-
ent. The generated MRS can reduce the burden on the DM by enabling him to concentrate on
making a preference judgment based upon the already-generated MRS.

A few methods utilize the generated MRS ; well known methods are the Surrogate Worth
Trade-off method (SWT) [7] and the method of Zionts-Wallenius (ZW) [18]. SWT utilizes the
generalized Lagrangian multipliers at the non-dominated solution set in the context of nonlinear
programming, with the multiplier A:; representing the MRS between the objectives ¢ and J
Trade-offs in SWT, however, are possible between only two objectives at a time. On the other
hand, ZW utilizes Wij, which is the decrease of the objective 7 that results from introducing a
unit of the efficient non-basic variable x; into the solution. The efficient non-basic variable is
one which, when introduced into the basic solution, cannot increase one objective without de-
creasing at least one other objective.

Suppose the formulation in the model (4) —(6) to generate MRS.

max;(mlze oA X) )
subjgct to

fX) =, i=1,..  kixp ®)

XecC (6)

Since this study uses the model (4) —(6) to generate the MRS which guarantees non-dominancy
after the trade-offs, let us define a term for that concept.

Definition : Efficient Marginal Rate of Substitution(EMRS) is a Marginal Rate of Substitution
(MRS) that guarantees the non-dominancy of the new solution achieved through the trade-off
that the MRS represents.

The definition of EMRS implies that we first have to find an initial non-dominated solution.
The EMRS is particularly useful when the DM feels that some goals are over-satisfied, while
some other goals have not been fully met. We will refer to the method of generating EMRS
developed in this study as the “Method of Generating EMRS(GEMRS)”. The Model (4) —(6) im-
plies that the DM freezes all goals but one, and maximizes the achievement of the unfrozen
goal. If there are more than two unfrozen goals, we cannot uniquely define a best solution,
unless the preference function between the two goals is explicitly defined. If there is just one
unfrozen goal, however, we can easily obtain the most preferred solution by maximizing the
achievement of the unfrozen goal. This rationale implicitly forces us to adopt the model (4)-(6)
for the development of GEMRS.

The e -constraint method uses a model very similar to (4)-(6); the only difference is that the
€ —constraint method uses inequality goal constraints in (5). It is well known that the € -con-
straint method provides a non-dominated solution [6; p. 54], which makes the model used in
that method a reasonable choice for generating a set of non-dominated solutions [8; p.250].




Since the lower bounds in the € -constraint method are not necessarily the same as the achieved
goal levels, however, the model (4)-(6) is better to generate MRS in such a way to improve
under-satisfied goals at the expense of over-satisfied goals.

The model (4)-(6) used in GEMRS is similar to the goal programming model, as defined by
(7)-Q10).

minimize 3¥-, @ (M
X, d
subject to (8)
XV =u, =1k ©)
diz0 i=1, . k (10)
Xec
where d=[di, dz,..., dr] (1D

However, there is no guarantee that the solution obtained through the goal programming is a
non-dominated solution. The other disadvantage of goal programming as a tool for supporting
trade-offs is that the goal programming model cannot control the generation of MRS effectively.
For these reasons, we adopt the model (4)6) in GEMRS.

Let us denote the current goal levels as u:°, i=1,..., k Suppose that the objective function p
in (4) is under-satisfied, while some objectives in (5) are over-satisfied. In this case, the values
in (5) may be somewhat diminished to improve the achievement of objective p. We assume
that DM has an idea about how much the objective p should be improved and what sacrifices
of goals 7=1,..., k. 1%p are acceptable in return. We will label the desired increment or decre-
ment of objective 7 as dui. Note that the 4 ui's are not necessarily the same as the EMRS;
they represent only marginal rates of substitution desired by the DM. To generate the EMRS,
GEMRS utilizes the model (12)-(14) which reflects the desired MRSs.

maximize fp()_() (12)
X
subject to
il =u"+dw. i=1,., koixp (13)
XecC (14)

The dup is not explicitly shown in the model, but it will be used in the evaluation of the
achieved goal p.

Let us denote the optimal feasible solution to (12)-(14) as X3 If the model (12)-(14) does not
have a feasible solution, however, we have to adjust the goals in (13). To assist in this process,
the modified formulation of (15)-(18) is very useful.

maximize fo(X)—(XF-1 Mi @) (15)
X, d - iep
subject to
X))+ di = w’ + du, t=1,..,k i¥p (16)
XeC (17)
di~z0, i=1,..., k, ixp (18)



When the desired goals (u:°+ 4u:) in (16) cannot be achieved, the positive &i” terms can pro-
vide the amount of under-achievement. M: is a very large positive number that drives the va-
lues of the ¢~ toward zero, if possible, with the highest priority. This implies that the achieve
ment of goals in constraints has a higher priority than the improvement of the objective function.
If there is a need to set priorities among the objectives i p, we may set different levels of
values on M.

When any di~ is positive, we have to adjust the goals in (16) until all di”’'s become zeroes
If the diminution of goal by the amount of positive di~ is not acceptable to DA, such an objec-
tive may be set as an objective function in (15). In this way, solve the model (15)-(18) itera-
tively until all di”’s in the model (15)-(18) are zeroes. That model then becomes for practical
purposes the same as (12)-(14). By solving the model (15)-(18) with all di7=0, we can find a
tentative MRS :

(Aur, Buz,..., fo(Xp*)—up ..., dux) (19)
If fo(Xs*)—us” = du,. the new solution by (15)-(18) provides better goal achievement than the
acceptable level of goal p, and the DM will therefore prefer the trade-off in (19). If fo(X,*)—
up” < dup, however, the computed achievement of goal p is worse than the desired goal level,
which tends to make the DM dislike the current MES. The DM may then want to repeat the
above process after additional adjustments of the goal levels of i=1,..., & 7= p. In any case, the
current MRS still does not have any guarantee of non-dominancy.

To find the EMRS, we must check the signs of Lagrangian multiplers in (13). When the qu-
antitative model (12)-(14) is a linear programming model, the shadow prices correspond to the
Lagrangian multipliers and appear as by-products of the simplex-method solution process. For
the case of linear programming, let us formalize below the condition of being non - dominated.

Theorem 1
A solution is a non-dominated solution to the linear model (15)-(18) if and only if

1) dir=0, i=1,..,k, ixp

2) All shadow prices in (16) are negative

3) The solution is non-degenerated.

Proof.

1) dim > 0 means that the current goal is infeasible. Therefore, all &i7’s should be zero to

ensure a feasible solution.

2) Assume the solution is non-degenerated. If the shadow price of goal z in terms of objec-
tive p, Ap(i¥p) is positive, then goal 7 is complementary with goal p, and both goals can be
improved simultaneously. Therefore, the current solution is by defimtion not a non-dominated
solution. When the shadow price is zero, goal ¢ (1% p) can still be improved without changing
goal p. On the other hand, when the shadow price is negative, goal p cannot be improved
without diminshing the fulfilment of goal 2 Therefore, the solution should have strictly negative
shadow price to be a non-dominated solution.

3) If the solution is degenerated, the solution has multiple shadow prices which may include
both positive and negative shadow prices as at the point o in Figure 4. To be non-dominated
strictly, therefore, the solution should be non-degenerated [1]. [Q.E.D.]

,,57,7




When the model includes the minimization of some objectives, the interpreation of the shadow

price and MRS should be the opposite. Nevertheless, the basic principles involved in both models
are the same.
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Figure 4. Shadow Prices of Degenerated Solution



4. Evaluation of Goals

In this section, we will focus our attention on the evaluation of goals. An important concept
useful for the evaluation of goals is the concept of ideal values, which is used in STEM [2],
SEMOPS [15], SIGMOP [16], Method of Displaced Ideal [17], GPSTEM [4], and Interactive Se-
quential Goal Programming [13]. The ideal points X/ , ¢=1,...,k can be computed by maximi-
zing fi(X),i=1,..., k respectively subject to the original constraints in (2). The opposite notion
of 1deal values is the Feasible Lower Bound (FLRB).

Definition. The FLB of model (1)-(2) is defined as
Li=min{ fi( X)), =1, kl, i=1,.k (20)
Assume there exists a feasible solution to the original constraints (2).

Theorem 2.
If the FLBs are used as lower bounds of goal constraints, there always exists at least one
feasible solution.

Proof
The model with goal constraints whose lower bounds are FLB is:

maxi)r(nize fo(X) 21
subject to
Xe C (22)
f(X)z Ly, i=1,.,k i*p (23

Since fi(XH) =z Li, r=1,..., k, for all ¢ by the definition of FLB, there always exists an ideal
point )_{r’ that is optimal for (21)-(22) and feasible under (23). [Q.E.D.]

Ideal values and FLBs with two linear objectives are graphically illustrated in Figure 5. In
this case, L= min | A(XD), AXD ) = (X)), and L2= min | fz(Q{{), FAX) :fz(,X{)‘ These
values can be used to screen mitially desired bounds of goals. SEMOPS and SIGMOPS use the
concept of bounds, and S7FAM, the method of the Displaced Ideal, GPSTEM, and others use the
concept of ideal points. There has been no consolidation between these two notions, however,
despite the close relationship between them. This section therefore deals with association of the
bounds of goals with ideal values and FLEBs for the Internal Model.

When the DM initially set the lower bound (LB:) and upper bound ( UB:) for the goal i, the
ideal value fi(X:'), Li, and the bounds must have one of the following six relationships :

1) Li§LBi§UBi§fi(£{i1)
2) LBi=Li= UBis fi( X:i')
) LBi=UBi= Li s fi( Xif)
4) Li§LBi§fz‘()_(i’)§ UB:
5) LBiéLi§fi(§i1)§ UB;
6) Li= fi(X:' )< LB: = UBi




DIf LisLBi< UB:i < fi( X:i!), the whole range of [LB:, UB:] is feasible.
2)If LBisLisUBi= fi(X:"), LB:i does not have to be less than L. Hence [L:, UB:] is more

meaningful and represents tighter bounds.
3) If LBi= UBi< Li<fi(Xi'), the bounds are too low in comparison with the feasible range.

The DM should reconsider the bounds and/or the model.
4) If Li < LB:=f(X:i')= UB:, UB: is too high to be achieved by the model. Feasible bounds

are [LB:, filX:) 1

f2(1)

L1, fo(X21)

f2(.)

A

v

Xi

Figure 5. Ideal Points and Feasible Lower Bounds



5) If LB:<Li=fi(X:')< UB;, the feasible range falls within the bounds. Therefore feasible
bounds are [Li, fi( X:1) ]

6) If Li=fi(;!) = LBi= UBi, the bounds are too high in comparison with the feasible range.
The DM should reconsider both the bounds and the model.

Through these adjustments, the initial optimism, pessimism, or modeling errors can be screened
out before the main evaluation. Let us denote the screened bounds through the above adjus-
tments [fi*, V1. On the other hand. in the External Model, the bounds [ #mis, bmer} from Figure
3 can be used to screen the range of a goal. The bounds obtained from the External Model
are not generic, however, because they are depent upon the levels of other goals.

5. Goal Setting Support (GSS) System

We are now ready to synthesize GSS for the mixed model using the techniques described in
the previous sections. A skeletal conceptual outline of the GSS procedure runs as follows -
1) Find an initial non-dominated solution.
2) Evaluate the current solution in comparison with the bounds of the goals. If the current
solution is satisfactory, stop. Otherwise, proceed to step 3.
3) Suggest a trade-off by the desired MRS.
Compute the EMRS and evaluate it in the light of the desired MRS. Return to step 2.

The full operational procedure of GSS consists of the following six steps:
1) Formulate the initial model.
2) Set the bounds of the goals.
3) Set the initial targets.
4) Find an initial non-dominated soltion.
5) Evaluate the achieved goals. If all goals are satisfied, them stop. Otherwise, go to step
6.
6) Trade-off using the EMRS by the Internal Model and/or adjust the goal by the External
Model. Go tolstep 5.
Let us describe each step in detail.

Step 1 (Formulate the initial model): The purpose of this step is to identify objectives, decision
varibles, constraints, and their functional relationships.

Step 2 (Set the bounds of goals) - This step begins by setting the required (lower bound) and
aspiration level (upper bound). These bounds will be refined by the ideal values and FLBs as
described in section 4, and they are used as reference points for evaluation rather than as

constraints.

Step 3 (Set the inital targets) : The initial targets 7:% should lie withn the screened bounds.
Initial targets that are too high or too low could cause longer iterations to reach the final

satisfactory goals.




Step 4 (Find an inital non-dominated solution) : Choose an objective as the objective function of
the model (15)-(18). Use the initial targets to find an initial non-dominated solution.

Step 5 (Evaluate the achieved goals) : The optimal objective function value in (15) can be either
of the following cases. Let X,y* denote the optimal solution of (15)-(18).

D) TV (X = i
2) f,'Léfi(Xp*)< T
3) FilX,") < fil

Recall that fi(X,") can never exceed fiY, since fi has been screened by the ideal value. Let
us review some recommendable --althought not required-- steps that the DM may take in
response to each set of circumstances.

1) When Ti=/i(X,*) < fi’, goal i is over-satisfied. The DM may be satisfied with the
current goal achievements and stop, or he may proceed to step 6 In an attempt to en-
hance other goals at the cost of some degradation of goal 1.

2) When f* = fi( Xp™) < T, goal 7 is somewhat underatisfied, but not badly so. The DM
may be satisfied and stop, or he may go on to step 6 to enhance goal 7 at the cost of
degrading other over-satisfied goals.

3) When fi(X»*) ~ fi*, goal i is absolutely under-satisfied, and the DM should proceed to
step 6 to enhance goal ¢

In addition to the bounds of goals with the original scale, the relative position of the standardi-
zed-scale target withlin the bounds can also be utilized. If the DM wants some trade-offs, he
should go on to step 6.

Step 6 (Trade-off using the EMRS): Set the desired MRS first, and choose the least satisfied
goal as the objective function. The EMRS will be computed accordingly. To generate the
EMRS, utilize the GEMRS as described in section 3. The desired MRS is used to evalute the
trade-off by EMRS. The External Model might be used to help goal adjustment process upon
the request of DM. At this point, return to step 5 for evaluation of the new solution.

6. An Illustrative Example

This section demonstrates the process of GSS with a numeric example. The functional form
of the model is assumed to be linear and continuous. This example has 4 goals, 3 constraints,
and 5 decision variables.

Step 1 (Formulate the initial model)
The initial model is (24) — (31):

maximize fi{X) = 800X: + 400X2 + 600X3 + 500X« + 300Xs (24)
maximize fo(X) = 200X1 + 300Xz + 200X (25)
maximize f3(X) = 500Xz + 1000X3 + 400Xs (26)



maximize fa(X) =
subject to

200X + 2000X4
5X1 +  2Xe + 3Xs +  4Xse+ X5 = 2000
2Xi+ 10Xz +  5Xs = 1000
4X2 + 7X3 + 10Xs = 1500
X1, .., X20

Step 2 (Set the bounds of goals)
The DM would like to set the upper and lower bounds of goals based upon his judgment. Su-
ppose the initial bounds UB: and LB: are assigned the values given in Table 1. The DM now
wants to compare the bounds with the ideal values and FLB. The ideal values are found by
maximizing fi(X), i=1,.. ., 4.subject to the constraints (28) — (31); they are summarized in the
second column of Table 2. Taking the ideal values into consideration, the DM can screen the
intal bounds. In this case, because no ideal values fall below the lower bounds, the DM need to

@7

(28)
(29)
(30)
@D

adjust only those upper bounds whose initial level is higher than the ideal value. The screened

bounds are given in column 3 and 4 of Table 2.

Step 3 (Set the initial targets)
The DM has set target points that lie within the bounds; both target points and bounds are

listed in Table 3.

The standardized scale of [0, 1] may also be used, as shown in Table 4.

Table 1. Desired Bounds of Goals

Goal Lower Bound Upper Bound
1 300, 000 400, 000
2 60, 000 80, 000
3 150, 000 250, 000
4 200, 000 300, 000

Table 2. Ideal Values and Screened Bounds of Goals

Goal Ideal Value Lower Bound Upper Bound
1 346, 242. 77 300, 000 346, 242
2 84, 782. 61 60, 000 80, 000
3 214,285.71 150, 000 214, 285
4 400, 000. 00 200, 000 300, 000
Table 3. Target Points and Bounds of Goals
Goal Lower Bound Target Point Upper Bound
1 300, 000 320, 000 346, 242
2 60, 000 75, 000 80, 000
3 150, 000 180, 000 214, 285
4 200, 000 250, 000 300, 000
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Table 4. Standardized Scales of Target Points

Goal Lower Bound Target Point Upper Bound
1 0 1433 1
2 0 750 1
3 0 . 467 1
4 0 . 500 1

Step 4 (Find an initial non-dominated solution)
Objective 1 1s selected as the objective function. Using the targets in Table 3, we can solve
the model (32) — (36) and (28) — (31).

maximize (X} — M(ds 4 ds + di) (32)
subject to

fo(X) t dz = 75,000 (33)

(X)) -+ ds = 180, 000 (34)

f(X) + di = 250, 000 (35)

di =0,i=2,34 (36)

and (28) — (31).
M 1s a very large positive number that forces the DM to fulfill the targets in (33) — (36) if po-
ssible, before attempting to improve fi(X). The &7 terms are used to identify the source of
infeasibilty if exists. Unfortunately, the model (32) — (36) and (28) — (31) does not have a feasible
solution, hecause «/2 = 12,500 is positive. The levels of goal achievement at this stage are listed

in Table 5.
Table 5. Targets and Current Goal Achievements
Goal Target Current Level Difference
1 320, 000 322, 500 +2, 500
2 75, 000 62, 500 —12, 500
3 180, 000 180, 000 0
4 250, 000 250, 000 0

To permit a feasible solution, the target of goal 2 should be adjusted to 62,500. After that ad-

justment is made, an optimal feasible solution is found :

X1 = 187.5,
X2= 0.0,
X3 =166.7,
X1 =125.0,
Xs = 33.0.

Since goal 3 has a positive shadow price (.54), however, this solution is not a non-dominated
solution. Values of both goal 1 and goal 3 should be increased until all shadow prices become
negative. After these complementary improvements are made, the initial non-dominated solution

1s found:
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X1 =187.5,

Xe= 0.0,
X3 =179.3,
X4 =125.0,
Xs = 24.5.

The goal achievements at this point are summarized in Table 6 [Again, standardized scales like
the ones in Table 4 can also be used for this purpose]. This information may also be displayed

in graphical form.

Table 6. Status of Goal Achievements

Goal LB Target Achieved Difference UB
1 300, 000 320, 000 327, 445 + 7,445 346, 242
2 60, 000 75, 000 62, 500 —12, 500 80, 000
3 150, 000 180, 000 189, 130 + 9,130 214, 285
4 200, 000 250, 000 250, 000 0 300, 000

Step 5 (Evaluate the achieved goals)

According to the initial non-dominated solution, goal 1 is over-satisfied by 7, 445 ; goal 2 is under-
satisfied by 12,500 ; goal 3 is over-satisfied by 9,130 ; and goal 4 is exactly satisfied. On the
basis of this information, the DM is most concerned about goal 2. Suppose he feels that the
original target of goal 2 might have been too high, and now wants to decrease the target of
goal 2 from 75,000 to 70, 000. To achieve the adjusted target, the DM is willing to sacrifice
the over-satisfied portions of goals 1 and 3. The desired MRS 1s then given in the last column
of Table 7.

Table 7. Desired MRS

Current .
Goal Achievement New Target Desired MRS
1 327, 445 320, 000 — 7,445
2 62, 500 70, 000 + 7,500
3 189, 130 180, 000 — 9,130
4 250, 000 250, 000 0

To focus on the improvement of goal 2, the DM has set the objective 2 as the objective
function.

Step 6 (Trade-off using the EMRS)
To generate the EMRS, the model (37) — (41) and (28) — (31) is used :
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maximize f2(X) — M(dT + d5 + di) (37

subject to
AX) + dr = 320, 000 (38)
A(X) + d5 = 180,000 (39)
f(X) + di = 250,000 (40)

di, di, de 2 0 (41)
and (28) — (31).

It turns out that all @7 =0 for =1, 3,4, and the optimal value of goal 2 is 62, 411. However,
since the shadow price of goal 1 in (38) is positive (. 1787), the current solution is not a non-
dominated solution yet. Since goal 1 is the only goal that is complementary with goal 2, the
non-dominated solution can be found automatically. While we search for the non-dominated
solution, we notice that goals 1 and 3 have zero shadow prices, while goal 4 has a negative
shadow price (—. 15). Therefore, to improve goal 2, the most effective way is to diminish goal
4 to some extent.

Assume that the DM has decreased goal 4 to 240, 000 and that he would like to determine
the impact on goal 2. In the same way as before, a new non-dominated solution is found :

X1 =197 3,
Xe = 0.6,
X3 = 166. 4,
Xa =119.9,
Xs = 33.3.

The EMRS computed using the new non-dominated solution is summarized in Table 8. The EMRS-

generated trade-off increases slightly the value of goal 2. If the decreases in goal 3 and 4 are
seen as an acceptable cost for improving goal 2, then the DM will prefer the trade-off by this
EMRS.

Table 8. The Efficient MRS

Previous Current Effcient

Goal Non-Dominated Non-Dominated cen

X X MRS

Solution Solution

1 327,445 327, 882 + 437
2 62, 500 63, 622 + 1,122
3 189, 130 180, 000 - 9,130
4 250, 000 240, 000 —10, 000

At this point, the DM may return to step 5 for evaluation. In this way, steps 5 and 6 can be
iterated until the DM is satisfied with all goal achievements.

7. Discussion

Since there can exist multiple paths in finding the negative shadow prices, the solution is path



dependent to that extent. Development of a guidance to a preferred path would be a very
important future resecsrch topic.

Because the goal setting process is an essential part of management, the role of Decision
Support Systemns in goal setting will become increasingly more important. If the structural re-
lationships between objectives can be quantified, the GSS framework can contribute to the de-
velopment of DSS. In many cases, however, the goal setting includes many qualitative behavioral
impacts, such as the effect of the difficulty of the goal level on performance, the effect of
specific goals in comparison to general goals [11, 12], and the effects of subordinate participation
in the goal setting process [10, 14]. Therefore, to extend the study on goal setting to include
qualitative factors, we need to adopt modeling schemes such as Post-Model Analysis [9] that
can incorporate both quantitative and qualitative factors.
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