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Computational Study
on the Simple Plant Location Problem:
Variations of the Benders Decomposition Method

Yangyul Kim

Abstract

We investigate various methods of the Benders decoposition algorithm in its application to the
simple plant location problem. We developed six variants. The master problem may be relaxed as an
LP problem up to an appropriate point in time, or need not be solved to the optimality before a cut
is added. Furthermore, since the subproblem is highly degenerated, we can generate more than one
cuts at a time.

The efficiency of the methods are examined using a sample problem. The result showed that the
adding two-cut method was superior to the standard method. The LP relaxation and the non-
optimization of the master program greatly improved the efficiency. Applying the LP relaxation
method, we were able to reduce the computing time by two thirds of the time required by the
standard method.

1. Introduction

The problem under consideration is the simple or uncapacitated plant location problem. The
problem deals with the supply of a single commodity from a set of supply sources (plants or
warehouses) to a set of customers (demand centers) with a known demand for the commodity.
Plants are assumed to have unlimited capacity so that any plant can satisfy all demands. The
elaborated survey paper by Krarup and Pruzan (1983) provides the state-of-the-art of this type of
problems.
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Suppose there are n demand centers. The demand of each demand center must be fully met from
one of the warehouses which will be built on m prospective sites. The number of warehouses to be
built should be determined to optimize an objective. Here, our objective is to determine how
many and where the warehouses should be opened in order to minimize total costs of the fixed
setup costs and transportation costs. We also like to know which demand centers each warehouse
does supply. We assume that the transportation cost from warehouse i to demand center j,

cij,depends on the distance from i toj. The transportation cost is a linear function of commodity

flows and may include production and administrative costs. A formulation of this type of problems

1s,
z*=Min z (0)
subject to,
z = Sifiyi+ 22 0%
2. yv;i=2MNO (1
2iyi<MXO (2)
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Zix;;=1, j=1,.n

Xj<y;,]=1,..n
1i=1,.m ()

xi;=0, yi=0 or 1, (5)

where f; is the fixed setup cost required to open a warehouse at site 1, MNO and MXO are the
pre-determined minimum and maiumum number of warehouses to be opened, and y;=1 if a
warehouse is opened at site i, x;j =1 if the demand of demand center j is supplied from
warehouse 1.

Since for y;'s fixed the constraints have the property of total unimodularity, the LP relaxation
on x;; leads to an interger solution.[see Garfinkel and Nemhauser(1972)]. The constraints (3) are
of the type known as generalized upper bound (GUB), and the constraints (4) known as variable
upper bound(VUB). Schrage(1975,1978) developed an efficient method to solve the problems with
VUB constraints. In the above, we adopted the tight formulation. In general, the tight
formulation provides an optimal solution with less fractional variables when the problem is relax
ed to an LP. Furthermore, when the Benders decomposition method is applied to solve the
problems, the tight fromulation generates better Benders’ cuts in the sense that they have a
greater right-hand-side constant in the minimization problem.

This type of problems has been studied by Kuehn and Hamburger(1963), Stollsteimer(1963),
Balinski(1965), Lasdon(1970), Hansen et al.(1981) and many others. The warehouse capacity is
not fixed beforehand, but it will be determined afterward. The warehouses must be built big
enough to accomodate the demand by an optimal solution. In the above problem, the transporta-
tion cost, ¢jj, is the cost required to meet the total demand of demand center i from warehouse j.

Most real-life applications of problem (0)-(5) are too large to be solved economically by
existing general mixed integer linear programming codes. Based on its simple and special
structure, various solution methods for the problem have been developed, i.e., heuristic methods
by Kuehn and Hamburger(1963), Manne(1964), the branch and bound algorithm devised by




Efroymson and Ray(1966), the dual-based Lagrangian relaxation method by Erlenkotter(1978).
We may also devise an algorithm exploiting the total unimodularity. This would be an LP
relaxation method combined with the VUB algorithm by Scharage (1975, 1978).

In this paper, we will investigate a solution method based on the Benders decomposition
algorithm developed by Benders(1962) and Geoffrion(1972). The algorithm has been applied in
many areas. Geoffrion and Graves(1974), Polito et al.(1980) and Franca and Luna(1982) are a
few examples among others. The Benders decomposition method is especially effective to the
problems of which subproblem can be solved easily. Balinski and Wolfe(1963) were the first who
tried the Benders decomposition method to solve the simple plant location problem. In this
paper, we show that the Benders’ algorithm may be improved by modifications in the way of

generating the cuts. For the computational works, we use the data in Karg and Thompson(1964).

2. Benders Decomposition

For any feasible vector y*ie., any vector satisfying (1), (2) and (5), we may write the problem
as follows,

2*(y9)= =iy, + Min 2; 2 jcijx;;
subject to,
Zx;=1, ]=1,.n
xj =y J1=L..n

Xij:ZO.

We minimize the transportation costs for a fixed y. The dual of the above problem is

D*(y9)=Zfiyi*+ Max Zjvj— ;2 yi'w;
subject to,
Vi Wij <Gy, i=1l,....m
i=1,..n

We know from the duality that wi; >0, v junconstrained.
z*(y)=D*(y") =z"
The last relationship is obvious from the fact that

z*=Min . v z*(y),
where Y is a set of y’s satisfying (1), (2), and (5). Using the dual problem, we write

z* =Mingy[ Zifiy;t Max Zjvj— 22 jyiw;j)
subject to,
vi—wij<cij, 1=1,...,m
j=1,..n
or equivalently,
2*=Min 2 f;y; +G

- 26—



subject to,
yeY
G=3 jVJ‘t— Z,— ijiw’ij for all t,

where [vY, wi] is a set of extreme points of dual constraints. The last version of the problem has
as many constraints as the number of extreme points. Instead of considering all the constraints at
the same time, the Benders' algorithm solves the problem iteratively by generating constraints
only when they are needed.

The iterative procedure is performed as follows. Suppose we know k extreme points. Then, our
master problem would be

z* (v, w")=Min Z{fy,+G
subject to,
yEY
G=Zvi—Z;Zyiw, t=1,. k.

With an optimal solution of the master problem, y**!, we write the subproblem as
z'(y“‘)= Z,fl}*,“-i-Mm Zizjcijxij

subject to,
2xi=1, j=1,..n (6)
Xi<y;*, j=1,..n
i=1,m (7)
x;;2 0.

After solving the subproblem, using its dual solution we add another constraint to the master
problem. The new objective value of the master problem must be greater than the old one. We
consistently approach the optimal solution. Furthermore, it is obvious that

2V, w2t < 2% (y*). (8)

In other words, an optimal solution to the master problem provides a lower bound, and an
optimal solution to the subproblem gives us an upper bound, of the objective value of our

problem. Therefore, at iteration k we stop the iterative procedure if for a positive number €,
H(y*)—z*(v', W) € 9

where z'(y*)=min=o,...k z*(y'*!). Otherwise, we must find a dual solution and add another
constraint to the master problem.

The above subproblem is a primal instead of a dual form. The primal problem can be easily
solved by inspection. To solve the subproblem, we do not need any LP algorithm. In the
following, we discuss how we add the constraints.

2.1 Method A (Standard Method)




Setting the initial values of vi and w{j to be zeroes, we solve the master problem. Using an

optimal solution, y;!, we solve the subproblem and compute the dual solution as follows:

Suppose a(j)=argmin; [c;; | y;=1].
x;; =1 if i=a(j), and x;;=0 oterwise.
Vi = Ca(jy,jp and

w'j=Max [0, Calijp ] -

The primal solution is to assign demand center ] to the closest open warehouse. The dual
variable v; is the cost required to satisfy the demand center j’s marginal demand, and wj;
indicates the opportunity savings to be realized if demand center j is supplied by warehouse i.
Once we find a primal optimal solution, a dual solution is easily obtained. Since we have found
a dual solution, we can add a cut to the master problem. This process is repeated until the

condition (9) is satisfied.
2.2 Method B

The primal solution to the subproblem is usually uniquely determined. But, we have many
alternatve dual optimal solutions. Therefore, it is possible to add more than one cuts whenever
the condition (9) is not satisfied. We add two cuts whenever we obtain an optimal solution to
the master problem. The first cut is constructed by a dual solution which is determined in the
same way as the method A, and we generate another cut based on an alternative solution given

as follows,

Suppose s(j)=argmin; [c;/y=1 and 1=/a(j)] . and
Ci=cs(jy; i s(j) exists, else C;=caj,-

Then an alternative dual solution is

v= C; and

wi=Max [0, Cj.—c‘ij]

In the above, s(j) is the second closest open warehouse to j. Note that if there is no s(j), we may
assign any number to C; Furthermore, any linear combination of the two solution is also
optimal. This model tries to cut the constraint set of the master problem more deeply by add-
ing two constraints at a time. We expect the number of iterations will be reduced. The tradeoff
is an increase in computing time needed to solve the master problem. Sometimes we may even
see the case that one cut dominates the other in the sense of Magnanti and Wong(1981)’s

dominance. The investiagation of relative efficiency of the two methods is an empirical matter.

2.3 Method C

In the above two methods, the master problem must be completely enumerated before a new

cut is added. Although the enumeration is a very time—consuming job, this procedure guarantees



that the optimal solution to the problem is found in finite iterations. The number of iterations
depends on the number of extreme points of dual constraint.  In order to reduce the number of
pivoting, we may add a new cut whenever we find an integer solution to the master problem. We
do not solve the master problem to the optimality. Geoffrion and Graves(1974) also tried this
approach. The cut is generated in the same way as the method A. The only difference from A is
when a cut is added.

For the method A and B, the master problem has been optimized before we get into the
subproblem. The master problem should be completely enumerated to find out an optimal solution
y* which gives a minimum to z*(v*, w*). This guarantees the lower bound of our problem, z*(vk,
w*), is non—decreasing. Thus we approach the optimal solution consistently. The method C is
expected to be helpful for us to reduce the number of pivoting operations for each iteration. But,
it costs consistency. Since the master problem is not solved to the optimality, the relationship
(8) does not hold any more. The non—decreasing property of z*(v*, w") is lost. The lower bound
given by z*(v, w*) has no significant meaning, but the upper bound is the cost of the current
solution. Although we do not solve the master problem to the optimality, we search for an
integer solution which gives the smaller objective function value than the current best upper
bound, z(y*), which was defined previously. This allow us to keep the lower bound to be below
the upper bound. Furthermore, we solve the master problem until we find an integer solution for
which the objective value is smaller than z4y*)-— €. When we cannot find such a solution, we
stop the iterative procedure.

Note that in spite of the nonoptimality of y*, z*(y*) is always greater than z*. Since the master
problem is not solved to the optimality, we suppose probabilistically that the resulting cut will
not be as efficient as the cut by the standard method.

2.4 Method D

Instead of adding one cut, we may add two cuts whenever we find an integer solution to the
master problem. The method of generating cuts is exactly same as the method B. We use the
same stopping rule applied for the method C.The difference of this method from the method C is
compared to the difference of the mathod B from the method A.

2.5 Method E (LP Relaxation)

The standard method solves the master problem as an IP problem. Solving an IP problem
takes much more time than solving an equivalent LP problem. As an effort to reduce the
computing time, our next approach is an LP relaxation of the master problem. We solve the
master problem without integer constraints until certain number of cuts are accumulated, and then
we take the integrality into consideration. The optimal solution to our problem is likely to be
found only after a number of cuts are added. We avoid of wasting time in the early stage of
generating cuts.

First, we solve the master problem using an LP algorithm. Even though the resulting solution
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is not integral, we are easily able to find an optimal dual solution to the corresponding
subproblem. The primal variables x;; must satisfy (6) and (7). Note that the primal subproblem can
be separated into n independent problems. So, for any j, its demand is first supplied by the
closest open plant. If (6) is not satisfied, we find the next closest open plant and assign its
supply to the demand center. We repeat this procedure until (6) is

Jj=0
j=Jj+1, xsum=0,
. -1
u, =y, for t=1, - m
a=argmin; (¢, | u, ¥0.)
Xsum=XsumtUq| yes
Koy =Ua, Us=10
no
Xo;=1—2xsum, v,=cq
a1

w,=max (0, v,—c,),

Figure 1. Flow Diagram for the Subproblem solution

satisfied. The dual value for (6) v; is, then, the distance to the warehouse which supplied
marginally. The dual price for (7) w;; is determined by the v less c¢;j. If this value is negative,
w;; is set to be zero. Figure 1 shows the procedure.

It is obvious that, for both cases of the standard and the LP relaxation, the lower bound
increases monotonically, and never be beyond the objective value of the subproblem. But, it is
not clear which method approaches the optimal point more rapidly. Because the two methods
generate a different cut for every iteration. It is likely that the LP relaxation approach generally
generates more cuts than the standard method before we reach an optimum. Therefore, if we
convert to the IP problem too late, we might have wasted time to generate unnecessary cuts. On
the other hand, if we add the integrality constraint too early, it will reduce the effectiveness of
the LP relaxation method. What is the optimal conversion strategy? The question cannot be
answered immediately. The optimal strategy seems to be different case by case.

In this study, we suggest and implement three conversion strategies: (a) when the gap between
lower bound and upper bound is less than 2%, (b) when the number of cuts generated is greater
than the number of warehouse sites, (c) when the consecutive two solutions to the master
problem are the same. If at least one of the conditions is statisfied, conversion to the IP problem
takes place. When we adopt LP relaxation method, we may sometimes encounter the condition
(a) is never met. There exists such a case that the lower bound from the LP relaxed master
problem does not approach the optimal solution of the problem (0)—(5). Without the condition
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(c), sometimes we might have generated redundant constraints if an optimal solution to the LP
problem were obtained before the condition (a) and (b) are satisfied. Once we have reached the
LP optimum point, we can no longer increase the lower bound from the master problem in the
LP stage. This implies that we cannot add a different cut after the LP optimum. Thus, when the
consecutive two solutions to the master problem are the same, we have already reached the LP
optimal solution. At this point, we must convert to the integer problem by adding integrality
contraints. The conversion rule (b) is quite arbitrary. We assume that a problem with the more
candidate sites requires the more cuts before it reaches an optimal solution.

After conversion to the IP problem, we apply the method A. Thus, the only difference from

the method A is that the method E has a warm-up stage to accumulate a certain number of cuts.

2.6 Method F

We have seen that the dual of the subproblem has a number of alternative solutions. Even
though the dual price v; is given by the next closest distance among the open warehouses, the
objective value remains unchanged. Since the Benders cuts are generated on the basis of the
dual prices, a different set of dual prices generates a different cut. If it is possible to generate a
deeper cut than the one by the method A, the expected number of cuts at the optimal solution
will be decreased. The following definition of dual prices generally provides us with a deeper
cut.

caj = min;  [cj5 |y, =1]

Ii= i | cij<c,, i#al

Vi= [ca, if I;#@

[mini lcij | i#a] , if =0

Wij=max [0, Vi—Cj
This set of dual prices always generates a Bender’s cut with a greater right hand side constant
term than a cut generated in a standard fashion. We can easily show that the cut by the above
dual prices dominates the standard cut. Therefore, when we implement the LP relaxation method,
we will get a better cut if we adopt the above alternative definition of dual prices to generate
the Benders’ cut.

Our last experiment will be a combination of the LP relaxation and the improved cut
genertion method. In the following, we compare the methods. The relative performance will be
measured by the cpu time.

3. Computational Results

We use the data by Karg and Thompson(1964) to implement and compare the methods. We
exhibit the data on Exhibit A. The transportation costs are symmetric and assumed to be
proportional to the distance among the cities. We have 5 demand centers. The warehouses can be
opened on any of these cities, and the fixed cost of opening a warehouse is the same for all the
cities. We test four cases: (2,4,0), (3,3,0), (2,4,100), and (3,3,100), where the first and second
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Exhbit A. Transportation Cost (cj)

. ] 1 2 3 4 5
1 0
2 30 0
3 26 24 0
4 50 40 24 0
5 40 50 26 30 0

index indicate the minimum and maximum number of warehouses to be opened and the last index
is the cost required for opening a warehouse.

We are easily able to program the methods using LINDO developed by Schrage of the
University of Chicago. To implement the method C, we add a constraint

Sy +G=z{(y")-¢

to the master problem. The constraint guarantees that the lower bound never be beyond the
upper bound. We stop solving the problem when the master problem has no feasible solution. We
used DEC—20 interactive computer. In the following, the computing time refers DEC—-20 cpu
time. We display the results on Exhibit B.

Exhibit B. Summary Results'

Method  ° (2,4,0 (3,3,0) (2,4,100) (3,3,100)
A 7.82(75) 16.03(247) 15.90(227) 15.58(231)
B 6.58(91) 12.00(210) 7.91(108) 9.43(165)
C 4.07(26) 9.47(92) 10.11(82) 9.35(83)
D 3.35(20) 7.98(106) 5.78(69) 7.17(77)
E 6.66(58) 8.18(73) 6.15(52) 7.30(62)
F 5.74(38) 5.01(29) 5.04(36) 4.99(32)

1. Time in cpu seconds. The numbers in parentheses are the number of pivoting operations.
2 The first and second index indicate the minimum and maximum number of warehouses to be

opened. The last index is the fixed cost which is applied to all the sites equally.

The method of adding two cuts for each iteration was better than the method of adding one
cut. For all cases the nonoptimization methods (C and D) dominate the corresponding standard
methods (A and B), respectively. By the nonoptimization method, the number of pivoting
operations was greatly reduced. As a result, the computing time was reduced by about 30%. We
also observe that the LP relaxation methods (E and F)are generally superior to the nonoptimiza-
tion method with one cut (C). The relative efficiency of the method D and E is not clear.
However, the best result was obtained when we applied the LP relaxation method combined with

the improved cut generation method (F). With the method F, the computing time was reduced by
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70% of the standard method (A). The number of cuts and the number of pivoting operations
were greatly reduced.

We have seen on Exhibit B that it is possible to cut the computing time remarkably when we
adopt the LP relaxation method. It solved the small sample problem in a third of the time
required by the standard method. We like to see if there exists any difference in applications to
bigger problems. We apply the methods, A, E and F, to a problem with 33 demand centers. The
data come from Karg and Thompson(1964). We investigate four cases. The results are shown on
Exhibit C. The LP relaxation method still dominates the standard method. It solved the problem
in one fifth to a half of the time required by the standard method. The improved cut method was
especially efficient for the last two cases. When we restrict to open the small number of
warehouses out of 33, the effectiveness of the improved cut method is not significant. An

explanation for this observation will be found when we look at the procedure to get dual prices.

Exhibit C. Computing Time for 33-city Problem

Moo 3se (2,3,205) (5,5,295) (25,25.295) (31,31,295)
A 171.33 252.46 372.53 492 46
E 34.96 49 .88 102.03 243.72
F 35.48 51.05 19.96 2.91

1. A: standard method, E: LP relaxation with standard cuts, F: LP relaxation with improved cuts.
2. The first and second index indicate the minimum and maximum number of warehouses to be opened. The last

index is the fixed cost which is applied to all the sites equally.

In the LP warm—up stage, if the LP optimal solution is fractional, then the resulting dual prices
are the same for both cases. According to my experiments, the smaller number of warehouses is
to be opened, the LP optimal solution has the more fractional values. Another explanation is
given by the set, I;. The smaller number of warehouses is to be opened, it is more likely that the
set I; is empty. Thus the methods generate the same cut.

Based on the results, we suggest that the LP relaxation method is a good approach to the
simple plant location problem. The effectiveness of the improved cut method will be prominent

for the case that the master problem has an integer optimal solution.

4. Conclusion

When we apply the Benders decomposition method to solve the simple plant location problem,
we observe the subproblem is highly degenerated so that it has many dual solutions. Exploiting
this observation, we may add more than one cuts each iteration. Another variation was made to
the master problem. We can drop the integrality constraints, or we need not solve the master
problem to the optimaltity. the results showed that the two-cut method was superior to the
one-cut method, and the LP relaxation and the non-optimization method dominate the standard
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method. Applying the LP relaxation method with the improved cut generation method, we were
able to reduce the computing time by more than half of the time required by the standard
method.

The improved cut generation method was especially efficient when we are allowed to open
many warehouses. The method introduced in this paper is very naive. Magnanti and Wong(1981)
suggest a method to find a pareto-optimal cut. It will be interesting to investigate the relative
effectiveness of the pareto-optimal cut and the method in this paper. Although we did not try the
non-optimization method combined with the improved cut, we conjecture that it will make no big
difference from the method F. It is likely that the larger the problem is, the more effective is the
method F. The non-optimization method adds cuts very efficiently in the earlier stage, but it will
lose the efficiency as the upper bound approaches the optimal solution. For the implementation
of the LP relaxation method, the choice of the conversion strategy is critical.

In order to keep the lower bound below the current best upper bound, we added a constraint to
the master problem. Similarly, we can add a constraint so that the lower bound increases. One
weakness of the method C was the inconsistency of the lower bound. Suppose L is the current
best lower bound. If we add a constraint

Siiy;+G>L
to the master problem, the lower bound will go up consistently. And we expect this will improve

the performance of the method C and D.
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