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ems and stimulated much of his work¢®, In

1. Introduction general, the integral of a time-independent Ha-

The qualitative analysis of differential equa- miltonian system about an equilibrium point do

tions have beentworked by Poincaré(1880,1890 1Ot exist(Poincaré, 1957). However, Henon and
1899), Birkhoff®, Liapunov(1949), Arnold®®, Heiles™® represented a regular behavior of the
flow, indicating the existence of approximate
integrals. The flow is the vector fields(or phase
t Presented at KSME July Conference 1984, space).

* Member, Dept. of Mechanical Engineering, In- Later, F.G. Gustavson® constructed formal
Ha University

**Graduated Student, Dept. of Mechanical Engi-
neering, In-Ha University uilibrium points. He proved that there exists

Smale outlined a number of outstanding probl-

integrals of a Hamiitonian system near an eq-
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a formal canonical transformation that reduce
the Hamiltonian to a normal form which is an
integral of a motion. Particularly, he treated
two-degree-of-freedom Hamiltonian system that
is plotted in level lines of the intersection of
the integral with some appropriate surface.
These expressions are based on KAM (Kolmog-
orov-Arnold-Moser) theory that shows the exi-
stence of invariant surfaces for nearly integr-a
ble Hamiltonian system.

In addition to these facts, the qualitative pic-
ture of the flows is called Poincaré map<» %19,
The map is utilized to predict the stability of
NNM’s in autonomnus two-degree-of-freedom
Hamiltonian sysem. The procedure is based on
using the Birkhoff-Gustavson(B-G) transform-
ation to obtain an approximation for the Poin-
caré mapU?p,

We summarize previous results concerning
the concept of NNM’s. Rosenberg®® introduced
the concept of normal modes of a nonlinear
system (Appendix). The existence of NNM's is
given by C.H. Pak(1968). Rosenberg¢® and
Anand® noted that for a class of duall-mass
system when the nonlinear spring forces are
of homogeneous degrees in the deflections there
exist more two normal modes. Later it is shown
(18) that the total number of NNM’s of a nonli-
near duall-mass system must be even number
which can only decrease or increase in pairs.

Nontheless, nonlinear systems remained lar-
gely inaccessible, a part from successible appl-
ications of perturbation methods to weakly no-
But the celestial mech-
anics is difficult in applications of perturbation
methods®®, The analysis remained the favored
tool for the study of dynamical problems until

nlinear problems¢4 17,

Poincaré work in 1880. He showed that pert-
urbation methods might not yield correct results
in some cases, because the series used in such
calculations diverged. Poincaré has studied ge-

ometry in the development of a qualitative ap-
proach to the study differential equations. La-
tely, there is a discussion of chaos and non
integrability in Hamiltonian systems by Abra-
ham & Marsden” and Holmes® 1

In this papsr, the computer program is con-
structed to find the third integrals with higher
orders and the integral is applied to two-degree-
of-freedom autonomous Hamiltonian system in
resonance. We plot the integral on the invari-
ant surface, Poincaré map, and investigate the
stability of NNM’s in an unsymmetric dual-

T
WA(m
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mass system.

¢

‘1
N=d+hkdd, fimd+kd?, fi=kd®
Fig. 1 The system S

/).

V=h

Fig. 2 A nonlinear normal mode

2. The System S

We consider the motion of two unit masses
in a nonlinear autonomous two-degree-of-free-
dom Hamiltonian system S contained to move
along a straight line restrained by two differ-
ent anchor springs and a coupling spring in
Fig. 1.

The positions of the masses are given by
generalized coordinates ¥ and generalized mo-
mentum y, both of which are unstreched. The
assumption is that restoring forces f; for the
different anchor springs are given by fi=d-+
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kid® and fo,=d-+k,d®, while for the coupling
spring, fy=hsd®.
The equation of motion for the system S are

X1=y1

X2=2Y,

.. 0

Ii=xX=— %:"xl_kxxxa’ka(xl“xz)s’

L. oV

Vo= =— o7, =—x,— kXt — ks (X, — %) 3,
- 2 2 By 4, ks

where V(x,, %) =1/2(x>+ %, )+Tx1 T3

wr B () W

The first integral for the system S corresp-
onding to the conservatien of the edergy

H(xy, %5, 31, 32) :—%“< yi+ 9 >+ Vixy, x2) =4,

(2)
where H(x1, x5, ¥y, y:) is & Hamiltonian.

In a previous work(11, 13) the system S be-
came the identical anchor springs and the cou-
pling spring, f=fi=f,=d-+kd® f;=d* This
system admits similar normal modes (SNM’s)
if 0<k<{4 and 4 SNM’s if 2<0 and k> 4.

The stability of the x,=-—x, out-of phase
mode and of the two SNM's which bifurcate
out of it have been investigated by Mathieu
equation®®, and the stability of the x.,=ux,
in-phase mode and of the two SNM’s bifurcated
out of it have been investigated by the third
integral with the order four and the Poincaré
map‘Y, They have written results as follows.

It was given a description of the nature of
the invariant curves of the Poincaré map in
the neighborhood of the singular points, i.e.,
NNM'’s. For the out-of phase mode x,=—=x; a
Taylor series give a family of ellipse if 2<4
(stable) in Fig. 3,4 and it is -a family of the
hyperbolas if &#>4 (unstabie) in Fig. 5. For
the in-phase mode x,=x; a Taylor series give
a family of ellipse if 2>0 (stable) in Fig. 4,5
and it is a family of hyperbolas if &<0(unst-
able) in Fig. 3. Sketches of the Poincaré map

Yy unit=.o3774

Fig. 3 The third integral k=—1, h=.02

V  unit =.037%

Fig. 4 The third integral k=1, &=.02

=

y unit = .o3774

i

!
]

)

Fig. 5 The third integral k=5, h=.02



for various values of & are given in Fig. 3,4,

5(11)'

In addition to Month and Rand“?, we con-
struct the -third integral with higher orders
than four and apply the approximate Poincaré
map to the unsymmetric system S.

(1) In the system S with three nonlinear
parameters &, k;, and k;, what is the ten-
dency of NNM's in parametric bifurcations?

(2) What happen to the NNM's at bifurca-
tion point if 4 is small or large?

(3) Let us plot the Poincaré map by the app-

roximate third integral as calculated by a co-

mputer procedure.

3. Hamiltonian Mechanics

In this section it is discussed the Hamiltonan
mechanics and Hamilton’s canonical equation
of motion in terms of generalized coordinates
and momenta (¢q,p). We note that a Hamilto-
nian mechanical system is given Dby an even
dimensional manifold, a symplectic structure on
it and a function on it, and that the Hamiltoni-
an vector fields on a symplectic manifold for
a Lie algebra (Poisson bracket). We conclude
with a discussion of an invariant tori with re-
spect to the phaseflow.

On a symplectic manifold, there is a natural
isomorphism between vector fields and I-forms.
Hamiltonian vector field is a vector on a sym-
plectic manifold corresponding to the differen-
tial of a function. A vector field on a manifold
determines a phase flow, ie., a ohe-parameter
group of diffeomorphisms. The phase flow of
a Hamiltonian vector field on a symplectic ma-
nifold preserves the symplectic structure of ph-
ase space, in Fig. 6,7¢®*%

In order to integrate a system of 2n differe-
ntial equations, there is to be 2n first integrals.
However, it is given in (11) that if we are
given a canonical system of 2n differential eq-

Fig. 6 Invarint tori in a three dimensional energy
level manifold
by

0,1 (UL D

S
~ x
I~

/(0,\0) 1,0

(a) on R? the covering space;
(b) on T2
Fig. 7 The linear map on the torus

uations it is often sufficient to know only #
first integrals -each of them allows us to reduce
the order of the system not just by one, but
by two.

Then we use canonical transformations to de-
velop an approximate first integral independent
of the first integral, H=#, by independent first
integral of the Hamiltonian equations.

We mean [F(g,p)=C, when F and H are
functionally indepenent. If we have a first int-
egral, F=C, then

dF _ oF dq  OF dp
at “9= ¢ Tat T ep at
_OF ®H oF oH

=3¢ op ~op g L

where {,} is called the poisson bracket.

We emphasize that the function F is a first
integral of a system with the Hamiltonian fu-
nction H if and only if the poisson bracket
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{H, F}=0
is identically equal to zero.

Now we apply Liouville’s theorem on integ-
rable system, ie., if, in a system with » deg-
rees of freedom (2n dimensional phase space),
# independent first integrals in involution are
known, then the system is integrable by gua-
dratures.

In two degree of freedom Hamiltonian system
if we find an approximate first integral indep-
endent of the Hamiltonian we can integrate
the system by quadratures.

Poincaré map

Let 7 be a periodic orbit of some flow gt in
R** arising from a vector field 7 (x). We first
take a local cross section Y, CR", of dimension
(2n-1). The hypersurface need not be planar,
but must be chosen so that the flow is every-
where transverse to it. This is achieved if
Fxy-m(x)=0forall xe¥,, where #z(x) is the
unit normal to Y, at x, in Fig. 8.

In our case the normal to the surface, x,=
0, is (1,0,0,0) and the tangent to the trajec-
tory is (&1, &2, J1, ) Which equals (¥, Y2, 91, 32)
from Hamilton’s equations. Thus whenever

(Y1, Y2 D1, 92) + (1,0,0, 0)=0
or ¥:i=0,

the transversality condition is violated. We
impose the additional restriction that y,>0Q wh-
en x,=0 in order to insure that the transver-
sality condition as y,#(0 make the trajectory

Fig. 8 The poincaré map:
The cross section "= {x,=0) " {H=H)

to pierce the surface section from the “same
side”. Therefore the surface section on poinc-
aré map is bounded by the curve

Y%z Y2 ) =0.

The Poincaré map can be founded analyti
cally as follows. Let F(x,)=C be a first in-
tegral which is independent of the energy inte-
gral H=h. The intersection of the F'=C surf-
ace with the surface of section 3, represents
the invariant curves of the Poincaré map. For
{fixed energy 4, these invariant curves may be
written.

F (%0, ¥2) =0, X2, 31 (X2, Y23 7) 5 32) =C.

4. B-G Transformation

In this section we describe a method that
has been developed for constructing approxim-
ate formal integrals of a hamiltonian system®.
The method is a perturbation technique valid
for small energies®'®, The method consists
of performing a series of canonical transform-
ations which reduces the Hamiltonian to a no-
rmal form. For our application, we interest a
resonance case only. The resonance means
that the frequencies are rationally dependent,
that is

21 C.a,=0 ’ (3)
has integer solution C. not all equall to zero,

i.e., the frequencies a, are commensurable®,
We begin with the system of differential

equations
. oH
i=—5
. °oH
y=——5 @

where x and y are generalized coordinates and
mementum vectors, respectively, and where a
Hamiltonian H is represented by

H(x,y) =H® (x,5) +H® (x,) oo

The power series of H(x,») is assumed co-
nvergent in neighborhood of x;=x,=0.
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In addition we make the restriction that H®
(x,y) is positive definite quadratic form. Then
we can write H in n-degree-of-freedom

H® (5, 3) = £, 5= (@457, ®)
The Hamiltonian of the system S becomes
H(x, ) =H® (x,y) + H® (x,3) =h (6)
where H(x,y) is in the normal form,
k
and H® (x,y) =—§‘—x14+ i x+24—§—3—

(x1—x2) %,

We use a first canonical transformation based
on the generating function (8) at s=4. The
assumption (5) means that we have a system
of n-uncoupled harmonic oscillators with freg-
uencies a,,v=1,--#. The higher order terms
of H(x,v) have the effect of coupling these
oscillators.

The Hamiltonian H(x,») with H® (x,3)
given by Ep.(5) is in normal form (3,5, 10)
if DH(x,y)=0, where

The first step is a canonical transformation
(x,v)— (&, 1) generated by xnp-+ W (x,7);

W

E=x-+ 7 (x,m)

s>

¥
y=n+

pe (x,m) &

with W a homogeneous polynomial of degree
s such that the new Hamiltonian (&, %) is in
normal form upto degree s. Under transforma-
tion we have

H(x,7;+ W;m ):P(x+ u;w , 77) ©)

where I'(§,7) =3 I'®™ (£,7) is the new Ham-
v=2

iltonian.

We now show that the determining function
"W (x,7) can be chosen so that I'>(&,7) is
in normal form. To do this we equate terms
of order s in Eq. (9) and obtain

DW (x,9) = H (x, ) =1 (x,7) (10)

where D is given by Eq. (7). Since W,
H and I'> are homogeneous polynomials of
degree s in 2n variables, they can be conside-
red vectors in a space of dimension m given
by

n+s—11

(2n—1) Is!

We consider Eq. (10) as a matrix equation
with W<, H and I' as m-dimensional col-

w=

umn vectors and the linear operator D asa m
Xm square matrix. The partial differential
operator D admits the decomposition of its do-
main D into the direct sum of range space R
and null space N of D, ie.,

D=R@®N and RN N={4}.

In order to solve the equation (10) we make
the canonical transformation

x=7i2~— (g+1p), 77=;12?(4~ip> 1y
and express equation (10) in the new complex
coordinate q., p.,v=1, <+, #. The transforma-
tion diagonalizes the operator D te., Dr=i(a,

—k)r where t=p¢’p* and 8 is a constant.
The canonical transformation satisfies the con-
dition which preserves the form of the Hami-
Itonian equations. Then equations (10) becomes

bW« (g p)=H(q.0) - @  (12)
S & D 2
where D _,Zi zap(q» 24, ”P"—a'ﬁ )

We note here that the domain of D can be
split so that any element of it can be written
uniquely as the sum of an element in the null
space N, ie., (a,7—k) =0, and an element in
the range space R, i.e., (a,j—k)+0. We ma-
ke a unique choice of solution by imposing the
condition that W< ¢ R. Therefore we can ch-
oose W and I'® so that DWW =R (x,7),
W#eR and I'®=N since H® is expressed
uniquely as R (x,7) -+ N (x, 7).

We now split the domain of D as its null

space and its range space. The null space



176 Chol Hui Pakand Yong Chan Moon

means that the diagonal terms satisfy a+&—c¢
—d=0. The values of a,b,¢,d are the integ-
er of the power of variables ¢,p. There are
nine diagonal terms of D which vanish in
order four. They correspond to the following
values of a,b,¢,d:
(a,b,¢,d)=1(0,2,0,2) (0,2,1,1) (0,2,2,0)
(1,1,0,2) (1,1,1,1) (1,1,2,0)
(2,0,0,2) (2,0,1,1) (2,0,2,0)
By Eq. (7) and Eq. (10) we obtain the follo-
wing expression for .the nullspace N (g, p)
of H® (q,p).
N® (g, p) = 122D, +Cags*Dipr+ Coda™ D1+ Car g
D2+ €301 Gepripet Cedi@epr® + €21 7Ds°
+6‘3412P1Pz+69£]121)12 (13)

where c¢= ——g— (ko +Ry)

(:2_—_(;4:66:58:%]@3

C5: - —%ks

Co= “‘%(kl‘}‘ks)-

Using the inverse of the canonical transform-
ation (11) we transform the equation (13) to
the original variables. It this way we find the
approximate first integral to be
Sy, X, 31, 92) = (Rt Ry) (X242 2
+ (Batky) (X2 +9.5)2
4y (X 2+ 22+ 312+ 5)
(X1 X2+ y1y2) + 4R (X2 +3,5)
(227 +32%) + 25 (" ~9,%)
(X~ Rt X2y =c  (14)
The higher order term of '™, {=s-+1,--
are determined uniquely by H® and the new
specified W, We find the term of order (i)
as follows.

o= g (L (25

_ alggﬂ‘) (alg/;?(s) )J]

=171+ 17l (s=1) =i
0<i<<I <
1>2, s=4 (15)
We next solve the equation (15) in order (i)
and choose the unique locally generating func-
tion W and a new Hamiltonian /"% in nor-
mal form successively.

In the last step we determine the new inte-
gral upto terms of higher order. We perform
the inverse -transformation .that express I in
the original coordinates.

The new integral I means an approximate
first integral independent of the energy integ-
ral, H=h, and represents a one-parameter fa-
mily of invariant curves with C, ie., I (x,%)
=C. These curves fill the interior of the region
of the x,—y, plane bounded the curve y,=0.

5. Computer Procedure

In these programs the bulk of the work
consists in representing, adding, subtracting,
multiplying, and differentiating polynomials in
2n variables. We describe here only how to
each of these operations is carried out.

In manipulating the homogeneous polynomial
we deal only with its coefficients a; which are
stored sequentially in the computer in a lexogr-
aphic order on the index vector j. We define
this order by Exponent mapping. The ordering
mapping defines a single valued mapping, say
K, of \‘vectors into the positive integers k; i.e..
k=K(j). In order to perform any of the basic
polynomial operations, v\ve must also know the
inverse mapping 1=K 1(k).

Adding and subtracting homogeneous polyri-
omials together is trivial; one merely adds or
subtracts corresponding terms in the machine
representation of the coefficients.

To multiply

O9w=3 ax’ by UT® (x--x) =|“Z buxt

. =n

fit=v
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We perform a double sum over j and [:

given j= (Jy, == ju) and [=({/y,-+/y) we form j
Fl=(1+11, e Jat-1s)

and than find the unique integer & associated
it. The partial product a;b; is then added into
location 2 of the product. Finally, to compute
the partial derivative of @“ with respect to
%x,, 1<<o<4, we search out in increasing order
over k, using j=K"1(k), those vectors j which
have a nonzero component j,. For each of
these vectors we form the product j.a; and
store it in the same sequence as it was found,
which happens to be the correct machine rep-
resentation. These products then constitute the
coefficients of 80 /dx, - The integer % becomes

(iyorsdo—1, 00040, 1<<o<4.

The exponent mapping is represented by the
order of integer as follows

Exp (i1, &2, 1, 7o) for 0<Ci<(8,0<{j<(8,s=i+].

The canonical transformation is represented
by C..i*¢" p*7,
The ‘E’ operation in computer is simply the
summation of the integer power a({—j). Then
we make a matrix space in the operation D,
ie., a(m,n)=a.i,, where m=k, n=K(@,—1,7.
+1).

where C,,,=nl/vl (n—v)l.

6. Experimental Results

We procedure the computer program applied
by the Poincaré map. The program performed
B —G transformation repeatedly upto eight order
polynomlals. Then we investigate the system S
in more detail than Month and Rand.

To investigate the system S in symmetric
system, k;=k,=k, the results are shown in
Fig. 11 (a) and
(1) In-phase mode: stable before bifurcation

k>0, :

unstable after bifurcation £<0. (%:>0)

(2) Out-phase mode: stable before bifurcation
k <4k,

unstable after bifurcation k> 4k; (k> 0)
In unsymmetric system, k;#k, at fixed ky=
1, the results are shown in Fig. 11 (b).
(1) In-phase mode: unstable in the dark solid
lines.
2k, <k <1/2ky, 0<hy, k2<0, k3<0)
(2) Out-phase mode: unstable in the dark solid
lines.
L Ak 172k <k, <dks+ 2Ry, Ry, Ry Bs>0)
In Fig. 9,10 we know the boundary of bif-
urcations at k; fixed in £, —k, space. As you
see, modes are bifurcated from stable to unst-

able when &, changes slightly or &,, Out-of-
¥ unif =, 02668

k=5, k=1, h=.01

Fig. 9 The thiid integral
Y unit =.02668

k=
I

ki==—1, k=1, h=.01
Fig. 10 The third integral
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|
!
|
(v}

. (a) the symmetric system (K=K,=K)
- (b) the unsymmetric system (K,#K,), at Kz=1)

Fig. 11 The parametric spacesifor the system S

y unit = 00267

=l

L
ky=Fk=.0, ks=1, h=.0001
Fig. 12 The third -integral

phase mode represents in Fig. 9 and in-phase
mode in Fig. 10.

We investigate the dynamical structure of
bifurcating points, kA =k,=0 and k,=k,=4 at
k;=1, respectively.

For small energy both phase modes are sta-
ble represented by concentric circles. When £

increase, the NNM's proceed to the bifurcation.

unit =.ieess

kh=k,=.0, k3=1, h=.5
Fig. 13 The third integral

y  dilt = .84380

N

k1:k2:.0, k3:1, h=10
Fig. 14 The third integral

At last the motion tends to be ergodic as %
becomes large.

7. Conclusions

A computer program has been here constru-
cted and named as TIC 4 to find the third
integral with the higher order terms by perfo-
rming a séries of the Birkhoff-Gustavson tran-
sformation and we investigate the dynamical
structure of nonlinear coupled oscillator S by
performing the computer - procedure - (TIC-4)
and generating an approximation for the Poin-
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caré map.

The system S consists of two unit masses
supported by nonlinear springs whose lineariz-
ed frequencies are in 1:1 resonance and the
potential energy consists of quadratic and 4th
order terms of displacement. It is that the sy-
stem S admits only 2 or 4 NNM's, depending
upon the values of the parameter %, k,, and
ks. It is also found that the bifurcating modes
enter as stable while the mode from which they
bifurcated changes from stable to unstable up-
on bifurcation.

It is emphasized that all these results are
valid only for small 4. The reason is that KAM
(Kolmogorov-Arnold-Moser) theory tells us that
invariant tori generally do not fill the energy
manifold =4 in systems which are not inte-
grable. For large enough energy % the Poincaré
map appears to be filled with “noise”, i.e.,
which motions seem to be ergodic.

The computer procedure becomes better as
the order incrases, but it is an open question
whether the integral is a convergent or an as-
ymptotic representation of the integral surfaces.
However, it is assumed here that the polyno-
mials upto eight converges to the integral of
motion. It is important to mention the amount
of time that problems consume in obtaining the
data points for the level curves. By using
TIC-4 program for the system S, it took ave-
rage 3.50 min to compute the normal form and
5.62 min. to perform the graphic procedure,
while the forward integral (Runge-Kutta met-
hod) took 8 min. to calculate a single initial
condition with a step size of 0.0005.

It is also noted that although we investigated
the system S in 1:1 resonance by B-G tra-
nsformation and the Poincaré map, it can be
obtained another system in resonance by similar
methods.

Finally, we note that for determining the

stability of NNM’s in autonomous two-degree-
of-freedom Hamiltonian system S, the integrals
and the Poincaré map can predict accurate dy-
namical behavior near an equilibrium point.

The computer procedure, the TIC-4, save
the mount of C.P.U. time largely than the fo-
rward integral.
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Appendix

Definition: For a System %-- %%:0, x=
(X4, = X2).

(1) Every component x;(f), i=1,---» has the
same frequency;

(2) There exists some ¢ such that x;(f) =0 for
i=1,---n, that is, a f for which all of the
componsnts vanish simulitaneously;

(3) All of the component functions #:(#) take
on their extreme values at the same time;

(4) For every ¢ and for every i, i=1,--,n,
the vafue x, (£), -, % .1 (), Xesr (D), oo, 22 (D)
are single valued functions of x;(f).



