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TRANSLATION THEOREMS FOR FEYNMAN INTEGRALS
ON ABSTRACT WIENER AND HILBERT SPACES

DoNG MYUNG CHUNG AND SooN JA KANG

1. Introduction

Let H be a real separable infinite dimensional Hilbert space with inner
product <-, -> and norm | - |. Let m be the Gauss measure on H defined
by

m(4) = (@m)/2fpexp {12 a,

where A=P-1(F), F is a Borel set in the image of an n-dimensional
projection P in H and dx is Lebesgue measure in PH. A norm | -
on H is called measurable if for every ¢>>0 there exists a finite dimensional
projection P, such that m({zx&H: ||Pz||>>¢} )< ¢ whenever P is a finite
dimensional projection orthogonal to Py. It is known (see [7]) that H
is not complete with respect to || - |l. Let B denote the completion of H
with respect to || - ||. Let ¢ denote the natural injection from H into B.
The adjoint operator i* is one-to-one and maps B* continuously onto a
dense subset of H*. By identifying H* with /I and B* with i*B*, we
have a triple B*CcHCB and {z,y)=(x,y) for all z in H and y in
B*, where (-, ) denote the natural dual pairing between B and B*.
By a well-known result of Gross, mei~! has a unique countably additive
extension v to the Borel os-algebra £(B) of B. The triple (I, B,v) is
called an abstract Wiener space. For more details, see Kuo [7].

In [5], Kallianpur and Bromley defined analytic Feynman integrals
on an abstract Wiener space (H, B), and established the existence of
the integrals for integrands belonging to a Fresnel class & (B) of functionals
on (H,B), which is the extension of the results on analytic Feynman
integrals on Wiener space which Cameron and Storvick obtained in [2].
Recently, in [6] Kallianpur, Kannan and Karandikar defined sequential
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Feynman integrals on an abstract Wiener and Hilbert spaces and estab-
lished the existence of both of analytic and sequential Feynman integrals
for integrands belonging to larger classes §°(B) and @*(H) than Fresnel
classes F(B) and F(H) considered in Kallianpur and Bromley [5] and
Albeverio and Hoegh-Krohn [17.

The purpose of this paper is, by using Cameron and Storvick’s proof
in [3], to prove translation theorems for both of analytic and sequential
Feynman integrals for the classes @'(B) and *(H) considered in [6].
These results are generalizations of the results on translation theorems
for analytic and sequential Feynman integrals on Wiener space in [3]
and [4], and for Fresnel integrals on Hilbert spaces in [1].

2. Preliminaries

Let (H, B,v) be an abstract Wiener space. Let 9 denote the ordered
set of all finite dimensional orthogonal projections P of H (P<Q if
PHCQH). For P9, let

C,={P"1(F) : F is a Borel set of PH} and ®Ry= EJ Cp.

Then it is easy to see that ®y is an algebra of subsets of H.
Let {e;, 7=>1} be a complete orthonormal system in I such that ej’s
are in B*. For each & in I{ and x in B, let

(h, )~ — [hj}},;@’ ;7 (x, ¢;), if the limit exists
0 , otherwise.
Then (&, -)~ is a Borel measurable functional on B and if both % and
a are in I, Parseval’s idendity gives (&, 2)~=<(h,z) (see [5]). A
function f in H of the form f(A)==¢ (((hy, b), ..., {ha, B))) is called a
cylinder function on H, where h;€ H, and ¢ is a Borel function on
Rt We denote by R(f) the random variable ¢ (((ky, 2)~, ..., (hs, 2)™))

on B.

DEFINITION 2.1. Let L(H, Ry, m) be the class of complex-valued
continuous functions f on H such that the net {R(fP): P&} is
Cauchy in y-probability. Further, for feL(H, Ry, m), let

R(f)=lim in p~probability R(f-P).
P

The mapping R is called an m-lifting (see [6]).
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DEFIINTION 2.2. Let
L}(H, Ry, m) = (fFEL(H, Ry m): | |R(F) |dv< o0}
and for fe L'\(H, Ry, m), define

‘]'H fdm=.l.BR (f)dv.

Let % (H) be the class of all countably additive complex measures on
Borel subsets of H with finite absolute variation. Let F(J1) be the class
of all functions f of the form

2.1) f(lz):[-He“""'de(h]), heH,

for some pu=MM(H). F(H) is called the Fresnel class of functions on H.
Let 0 : B—>C. For A>>0, we denote §* by the function defined by
9 (x) =0(212x), x2<B. '

LEMMA 2.1 [6]. Let f&€F(H) be of the form as (2.1). Then
feELY(H,Ry,m) and R(f)=F, where F is given by

(2.2) F(z):[Hei(h' D du(h), xEB.
and for 2>0, we have R{f*)=F% for all A>(.
Further, if P,,—S>I (i.e. P, converges strongly to the identity operator
I), then we have R(f?P,)—R(f)=F2 in L1(B, &R(B),v).

LEMMA 2.2 [6]. Let A be a self adjoint trace class operator with
eigen values «y and corresponding eigenfunctions {e;}. Let u(h)=<{h, Ah),
hcH. Then, for all >0, W*&L(H,Ry,m) and R@?)=uv, where v
is given by

_ [lim iak[ek, 2)~]2%, if the limit exists,
v (.'L') == ]} a0 k=1
, Otherwise.
and v is denoted by (x, Ax)".

LEMMA 2.3 [6]. Let pci(H) and A be a self adjoint trace class
~ operator on H. Let g, G be defined by

(2.3) 2 (h) =ef/2<h,Ah>fHei<hl. P dp(hy)
and
(2. 4) G(.’C) :ei/Z(x, A.‘r)"'J'Hei(h,.’t)Ndﬂ (h) —:eiIZ(.z', Az)"’p‘ (.’L'), say.

then for 2>0, we have R(g?)=G? and further if P,,-LI, then
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R(g*P,)—G* in L'(B, 8(B),v).

For a real number g, ¢#0, let @°(H) [resp. @°(B)] denote the class
of functions g [resp. G] defined by (2.3) [resp. (2.4)] for some u&
M (H) and some self adjoint trace class operator A on H such that the
bounded inverse (I41/¢gA)-! exists.

For a self adjoint trace class operator A with eigenvalues {a;}, the
Fredholm determinant of (74 A) (denoted by det(I+A)) is defined

by det(I-}—A):ﬁ (1+a;), and the Maslov index of (74 A) (denoted by

ind(J-+A)) is the number of negative eigenvalues of (I+A), i.e.
ind(J+A) =# {j : 1+a;<<0}.

3. Translation theorems for analytic and sequential Feynman
integrals on B.

In this section, we prove translation theorems for both of analytic
and sequential Feynman integrals for the class §°(B).

DEerFINITION 3.1. Let F be a measurable complex-valued function on
B such that

@) Jr@ =] FG2)av(2)
exists for all real 1>0.

(i1) There is an analytic function Jp* on Q= {z&C]| Re(2) >0}
such that Jg* () =Jp(2) for all real 2>0. Then for z2€Q, I(F)=
Jr*(2) is called the analytic Wiener integral of F over B with para-
meter z. For a real ¢(¢#0), if the limit

lim I*(F) =I(F)

z—v—iq
=)

exists, I,(F) is called the analytic Feynman integral of F over B with
parameter g.

Given two complex-valued functions F and G on B, F is said to be
equal to G s-almost surely(s-a.s.) if for each a>0, v{z€B:F(az)+#
G(ax)} =0. Let’s denote this equivalence relation between functions on
B by F=G or F(z) =G(x),x€B. It is easy to see that if F=G, then
Jr() =Jc(2) for all real 1>0. For a function F on B, let [F] denote
the equivalence class of functionals which are equal to F s-a.s.. The
class of equivalence classes defined by
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F(B)={[F1;F(a) =[pe®®"du(h), pcit(H))}
is called the Fresnel class of functions on B. It is known [5] that F(B)
forms a Banach algebra over the complex field. As is customary, we
will identify a function with its s-equivalence class and think of F(B)
as a class of functions on B rather than as a class of equivalence classes.

DEFINITION 3.2. Let F be a measurable complex-valued function on
B such that R(f%)=F% for all 17>0 for some f& L(H, Ry, m) and let
Fp =R(foP) for all P=9. Suppose that I,°(Fp) exists for all PP
and that the limit limZ=(Fp ) =1°(F) exists for all z,——ig(g+0),

z,€Q and for all P,-51, P,&9. Then I'(F) is called the sequential
Feynman integral of F over B with parameter q.

THEOREM 3.1 [6]. Let ncW(l1) and let A be a self adjoint trace
class operator such that (1~i—~1—A>“l(q$O) exists, let GE@G(B) be given
by !

G(x)= e% (@ Az~ J.Hc" h™dy, x&B.
Then 1,°(G) and I1°(G) exist and

1/(6) =17 (G) | det 1+ —%I-A) R

Zindg+-Lay ~Z e Lamm
2 g IHE 2q q dﬂ (h) .

LEMMA 3.2. Let K and L be complex—valued measurable functions
on B. If K=L and h€H, then K(-+h) =L(-4-h).

Proof. Let >0 be given. Since K=L, E,= {zx€B:K(Az) *L(Az)}
is a y—null set. Let Iy, denote the indicator function of E; on B. Then,
since v(E,;)=0, it follows from [7] that

T e
.[BIEZ(x+%)dV(x):e 2! .[Blgj(x)e(" “dv(x) =0.

Hence IEz<x+—%>=0 for almost all z& B, so that :r—f—%&Ez for almost
all x&B. Therefore, we have K (- +4) =L(-+5).

THEOREM 3.3. Let y&H, and let GEG (q= R, q+0) be given by
G(m)=e%(I'AI)NF(x), rEB

where for some neW(H),
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Flz) =~ [ EROTAp(R), ZEB.
Then K( - )=G(-+y) is in the class ¢ (B), and
LUK) =I5(K) = ldet(1+-$~A>_1[ “1/37F M)

i<y, Ay> ~L e Ly hray, hraps A<k y>
6—5 » Ay [ % ( 7 1A+ Ay), (h+AY)> o d/t(h).
JH

Proof. Since
G(x)ze%“'"’ff O3y (), 2EB,
JH
it follow from Lemma 3.2 that

Loty Alz+y)™ ; ~
Glaty) =et [ deau), ac
iz, An)~ ; ~L A
::671 ’ .j e'””"Ay,x) 'e-z » 'ez<h'y/ dﬂ(h)
H

i(z,Az)"‘ . ~
—) jHez(h,x) dﬂ* (h),

where for any Borel set E in H, .
1 (B)=A(E—Ay) and 4(B) = ™[ shrdu(h).
Clearly, we have p*eM(H) and K( - )=G(-€{—y)e @*(B). Therefore,
by Theorem 3.1, we have
L' (K)=L'(K)
= [det (T4 A) | 1/2 E T TR g )

—i_"’ind r_l_i
:|det(1+%A)—1|—1/2e Fiduein,
e§<y,Ay>[‘ 6—3‘5<(1+%A)-'(h+,4y>,<h+Ay)> <k 2 (h),
H
completing the proof of theorem.

THEOREM 3.4. Let G=@'(B) (= R, ¢+#0) be given by
G(X) =expli/2 (x, Az)~} F (),
where FEF(B). Then for each y=eH, we have

LY(® =e-‘§ilvlzlaa<G(_ +y) - eialn DY

JSG(G) :e%lylzlsq(G(' +y) e, .)N)'
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Proof. Since FEJ(B), for some pcM(H)
F(z) = [geih 2 du(h), z<B.

Thus we have
L(x)EG(x)e——tq(y ™ 7(1 A J' of (h, 2™ p—ig(y, x)”d#(h) r€B
E'T(I'AI)NJHei(h—-qy, x)Nd‘Lt(h)

_ eé ,,-,Az)~jHei(h, 2 du*(h),

where p*(E)=p(E-+qy) for E€ &8(H). Clearly, we have p*<W(H)
and L&@*(B). Hence by Theorem 3.1
"i“d(n.é_A) f e:ﬁi«H%A)—lh'b du* ()
H

L) =|det(I+ %A) |
|det(l+ A) l—l/Ze_.z."ind(H--%A) _J‘He;_;qp,?,,) Nh—g3), m>d (h)

To evaluate the integral on the left hand side of the above equation,

we observe that
-1
(1+54) " h=a9), =)
-1
(h+Ay—qy—Ay), h+Ay—qgy— Ay

—((1+54
L AN —g(I+7A)y), (et Ay)—a(1474)5)

(e

-1
(h+Ay) —qy, (h+Ay) —q<I+%A)y>
(k- Ay), htAy)—gly, Ay)—24<y, by +a*(y, ¥

Thus we have
—d < Ly h-gp), h-ay>
J 7Y dp(h)
H
~Epyle E<pty> [ ~he<ui L Ay, hrar>
A I P 50 R du(h).
H

=e
Hence, by Lemma 3.2 and Theorem 3.3
L) =LA (G )einn ) =L1(G( - )erier.07)

TN LG 4)) = T LG ().
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This completes the proof of the theorem.

REMARK. Taking A to be the zero operator in Theorem 3.4, we obtain
the results on translation theorems for both of analytic and sequential
Feynman integrals for the Fresnel class of functions on B(cf. [3], [4]).

4. Translation theorems for analytic and sequential Feynman
Integrals on H.

In this section we prove translation theorems for both of analytic and
sequential Feynman integrals for the class @*(H) and show how those
integrals can be modified so as to be translation invariant.

Let f: H—C be such that for all real >0, fic L1(H, Ry, m).

For real 1>0, let
Ks() =JH Fidm.

DEFINITION 4.1. Let f be such that there exists an analytic function
Ks*(z) on Q such that K;*(Q)=K,(1) for all real A>0. Then for
2€Q, Kf*(2)=I,"(f) is called the analytic Gauss integral of f over H
with parameter z. For a real ¢q(¢+#0), if the limit

lzi_’n“lm]az (f) :Iaq(f)

exists, I,°(f) is called the analytic Feynman integral of f over H with

parameter g.
Let f: H—C be such that for all P9, for all real 1>0,

(4.1) | 175 et e dg<ton
« Rﬂl Jj=1

where m=dimPH and {e,’, ey, ...;e,’} is an othonormal basis for PH
and for 2@, define

T Y=L 2| r(Bigeei i de.
R™M J=1

DEFINITION 4. 2. Let f satisfy (4.1) for all 1>>0 and Pe D,
Suppose that the limit

limJ (20, P2) =1°(f)

exists for all z,——ig, 2,€Q and for all P,,LI, P,e9. The limit
I'(f), easily seen to be independent of {z,}, {p,}, is called the sequ-
ential Feynman integral of f over H with parameter q.
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THEOREM 4.1 [6]. Let pc(H) and let A be a self adjoint trace
1
class operator such t/zat<1+—(11—A> exists, (qER, q+0). Let gc§*(H)
be given by

5 <h Ab>

g(h)=e Jue<hr-¥du(hy), heH.
Then 1,'(g) and 1](g) exist and

~1/2 _fz;, 1 i RIS
L(g)=1%(g) = Idet([—{—%A)} o3 i+ ) [He 37 <h i+ LA h>dﬂ(’l).

THEOREM 4. 2. Let ge@i(H), (g€ R, q+0) and ycH.
Then g(-+y) @ (H) and

L'(g(-+)) =eT" 1,1 (g emin<y. )
La(g (- +3)) =e " 11 (g eiv<n ),

Proof. The proof of the theorem can be shown by using Theorem 4. 1
and the same argument as was used in Theorem 3.3 and Theorem 3. 4.

COROLLARY 4.3. Under the hypothesis of Theorem 4.2, we have
g(-+y)eW(H) and

LH(g) =e*"". L1 (g (- +y) i ),
1'(g) =", I (g (- +y)eie> ),

Following Cameron and Storvick [4], we define the translation inva-
riant analytic and sequential Feynman integrability of function on H.

DEFINITION 4. 3. Let g be analytic [resp. sequential] Feynman inte-
grable over H for some real ¢#0. Let

(4.2) K (B)=exp [% |h12} g(h), heH.

Then we define the translation invariant analytic [resp. sequential]
Feynman integral of K over H with parameter g by

(4.3) LK) =L (g) [resp. I/(K)—=1(g)].
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THEOREM 4.4. Let q be real, q+#0, let g=@i(H), and let K be
given by (4.2). Then for each yEH, K(--+y) is translation invariant
analytic and sequential Feynman integrable over H with parameter q, and

Ia”q (K(' +y>) =Ia”q (K)a and Is”q(K(' +y)) :Is”q(K)-
Proof. By (4.2) we have, for hcH

K (h3) =exp [ 2 |+y12} ¢ (h+)

—exp {2 1417 - expligth, ) exp (L 1517 g (h+s).
By Theorem 4.2, g(-+y)e@?(H) and so
glhko) = [ i duth,

where pc(H) and A is a self adjoint trace class operator such that

1 .\t .
(I +7;A> exists. Now, let

() =" Rk =)

where E is a Borel set in /. Then we can write

(R12 L <k Ak> J
‘e .

K(h+y)=c* & da(hy), he H.

Hence K(-+y) is translation invariant analytic and sequential Feynman
integrable. Applying Corollary 4.3 and equations (4.2) and (4.3). we
have

i

LK (- +9)) =LA (e e g (- +3))
=1,"(¢) =L “4(K)

and similarly we have I/9(K (- +y))=1/4(K), completing the proof of
the theorem.
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