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ALMOST-INVERTIBLE SPACES

PaulL E. LoNG, LARRY L. HERRINGTON AND DRAGAN S. JANKOVIE

1. Introduction

A topological space (X,t) is called invertible [7] if for each proper
open set U in (X, ) there exists a homeomorphsim 4: (X,7) — (X,
) such that R(X—U) < U. Doyle and Hocking [7] and Levine [13],
as well as others have investigated properties of invertible spaces. Rece-
ntly, Crosseley and Hildebrand [5] have introduced the concept of semi-
invertibility, which is weaker than that of invertibility, by replacing
“homemorphism” in the definition of invertibility with “semihomeomor-
phism”, A space (X,7) is said to be semi—invertible if for each proper
semi—open set U in (X, 7) there exists a semihomeomorphism A: (X, 7)
——> (X, ) such that A(X—U) < U. The purpose of the present article
is to introduce the class of almost-invertible spaces containing the class
of semi-invertible spaces and to investigate its properties. One of the
primary concerns will be to determine when a given local property in
an almost-invertible space is also a global property. We point out that
many of the results obtained can be applied in the cases of semi-inver-
tible spaces and invertible spaces. For example, it is shown that if an
invertible space (X,7) has a nonempty open subset U which is, as a
subspace, FH-closed (resp. lightly compact, pseudocompact, S-closed,
Urysohn, Urysohn—closed, extremally disconnected), then so is (X, 7).

2. 6-Homeomorphisms.

We recall that a subset A of a space (X,7) is said to be regular-open
(resp. regular—closed) if A=int(cl (A)) (resp. A=cl(int(A))). The
family of all regular-open (resp. regular-closed) subsets of a space (X,
t) is denoted by RO(X,7) (resp. RC(X,z)). The topology 7, on X
which has as its base RO(X, ) is called the semiregularization of =. A
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space (X,7) is said to be semiregular if r,=7. A function f: (X,7)
—> (Y, 1) is called O-continuous [8] if for each 2#&X and for each
open set V containing f (x) there exists an open set U containing z such

that f(cl(U)) el (V).

DEFINITION 2.1 A bijection f: (X,t) —> (3,0) is a O~homeomorphism
if both f and f~' are O-continuous.

Evidently, every homeomorphism is a #-homeomorphism, but the con-
verse is not ture since the identity function from a non-semiregular
space (X,7) onto (X,7;) is a f~homeomorphism which is not a homeo-

morphism.
The following characterization of #~homeomorphisms is established in

[11].

THEOREM 2.2 A function f: (X,7) —> (y,0) is a O~homeomorphism
if and only if f: (X,7;) —> (9,0,) is a homeomorphism.

A topological property P is said to be semiregular if it is shared by
a space and its semiregularization. Combining Theorem 2.2 and the fact
that the identity function from a space onto its semiregularization is a
0-homemorphism we obtain the following corollary.

COROLLARY 2.3 A topological property is semiregular if and only if
it is preserved under O-homeomorphisms.

There some other observations about #-homeomorphisms as well as re-
gular-open and regular—closed sets that we wish to make before procee-
ding to our weaker form of invertibility. The first of these properties
are found in the next lemma and have rather straightforward proofs
which are omitted.

LEMMA 2.4 Let(X,7) be a space and let Y be un open subspace of
(X,7).

(a) inty (cly (A)) =Y Nint(cl(A)) for cach subsct 2\ of y.

(b) RO(Y,z|Y)={YNU: UcRO(X,1)}.

(c) RC(Y,r|Y)={YNF:FERC(X,7)}.

(d) (Y);=rlY.

Combining Theorem 2.2 and Lemma 2. 4 we have the following result.

THEOREM 2.5 Let f: (X,7) —> (Y, o) be a O-homeomorphism. 1 hen



Almost-invertible spaces 93

(@) Uer, implies that fIU: U—>f (U) is a O-homeomorphism.
(b) FERC(X,7) implies that f|F : F —- f(E) is a 0-homeomor-
Dhism,

Recall that a subset A of a space (X,7) is said to be semi—open [12]
(resp. a-set [15]) if Accl(int(A)) (resp. AcCint(cl(int(A)))). The
family of all semi-open sets (resp. a-sets) in a space (X, 7) is denoted
by S0(X,z) (resp. z2). It was observed in [15] that z= is a topology
on X and that rCz*c80(X, 7). The topology z* is, in fact, the finest
topology in the class of topologies on X which yield the same semi~open
sets as 7 and was denoted by F(z) in [6]. A bijection f: (X,7) —>
(Y,0) is called a semihomeomorphism [6] if f( U)<80(Y,s) for each
UeS0(X,7) and f~1(V) €S0(X,z) for each VESO(Y,0). A property
P is called semitopological [6] if it is preserved under semihomeomorp-
hisms.

The following results, which will be very useful in the sequal, are
established in [11].

THEOREM 2.6 A function f : (X,7) —> (9,0) isa semihomeomorphism
if and only if f: (X,t%) —> (y,0%) is a homeomorphism.

COROLLARY 2.7 A topological property is semitopological if and only
if it is shared by a space (X,t) and the space (X,1%).

THEOREM 2.8 Semihomeomorphisms are O-homeomor phisms.

COROLLARY 2.9 Semiregular properties are semitopological.

3. Invertible and semi-invertible spaces.

Let I(J) be a class of topological properties such that PeJ (PeJ)
if and only if for any invertible space (X,r) if a nonempty set UErt
is such that U(cI(U)) has P, as a subspace of (X,7), then (X, 7) has
P. It was shown in [7],[13], and [14] that the following properties
are in I(resp. J) : Ty, Ty, T, separability, first countability, second
countability, regularity normality, and 7, complete regularity (resp.
compactness and T, paracompactness).

We say that a topological property P is finite unionable (resp. open
finite unionable, closed finite unionable) if a space (X,7) has P when a

subspace A;(i=1,2,...,n) of (X,7) has P and X= _LlA,-.
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THEOREM 3.1 If a topological property P is open finite unionable
(resp. closed finite unionable), then P<I (resp. P&J).

Proof. Let P be an open finite unionable topological property, let
(X, 7) be an invertible space and let U be a nonempty open subset
which has P as a subspace of (X, 7). Then there exists a homeomor-
phism % : (X,7) — (X, z) such that A(X—U)< U. It is not difficult
to see that this implies that X=UU,(U). Clearly, 2(U) is open in
(X,7) and R(U) has P. Since P is open finite unionable, (X,7) has
P. Therefore Pl

The proof of the second part of the theorem is paralell to that of the
first part when it is observed that X=cl(U) Uk (cI(U)).

We remark that compactness, countable compactness, Lindelofness and
separability are finite unionable properties and that T, Ty, first coun-
tability and second countability are open finite unionable. In this section
we prove that two more properties are in the class 1.

THEOREM 3.2 A property of spaces being Urysohn is in the class I

Proof. Let (X,7) be an invertible space and let U be a nonempty
open set which is, as a subspace, Urysohn. Then U is T, and since
T, is in the class I, (X,7) is T3 To show that (X,7) is Urysohn,
let z,#x, belong to X. Then, because (X, z) is T, there exist disjoint
open sets V3 and V in (X, 7) containing z; and x,, respectively. Fur-
thermore, V, and V, may be chosen so that ¢ (V) Ucl(V,) # X. Other-
wise, X consists of exactly two points and the proof is complete.
Since (X, r) is invertible, there exists a homeomorphism % : (X, 7) —>
(X, 7) such that

h(el (V1) Uel(V2)) =cl (h(V1)) Ul (h(V2)) U

([7], Theorem 6). Clearly, A(V;) and A(V,) are open in (X, 7) and
hence open in U. Since h(x;) #k(xy) and U is Urysohn, there exist
open sets W; and W, in U containing k(z;) and h(x;), respectively,
such that cly (Wy) Nely (Wy) =¢@. Denote WyNA(Vy) by H; (i=1,2).
It is clear that ¢l (H;) el (h(V;))cU(@=1,2). Therefore cly(H)=UnN
c(H;) =cl(H;) (i=1,2). Since H,, Hye7, x;=cd (k" (H)) (i=1,2)
and /(A1 (H)) Nl (B (Hy)) =¢, (X,7) is Urysohn.

THEOREM 3.3 Extremal disconnectedness is in the class 1.
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Proof. Let F be a proper regular—closed subset of an invertible space
(X,7) and let U bea nonempty open subset which is extremally discon-
nected as a subspace of (X, 7).

Case 1: U—F+#¢. Then V=U—F is open in (X,7) and hence is
open in U. Since extremal disconnectedness is open hereditary, V is
extremally disconnected as a subspace of (X, 7). Let & be an inverting
homeomorphism for V. Then A(F)<V and h(F) €RC(X,7). By Le-
mma 2.4(c), h(F) is regular~closed in V. Since V is extremally dis-
connected, A(F) is open in V and hence is open in (X, 7). Therefore
F is open in (X, 7).

Case 2: U—F=¢(UCF). Denote by V the regular-open subset X —F
of (X,7). Let h be an inverting homeomorphism for U. Then A(V)C
H(X—-U)cU and h(V)ER0(X,7). By Lemma 2.4(b), A(V) is regu-
lar-open in U and since U is extremally disconnected, A(V) is closed
in U. Noting that A(X—U) is closed in (X, 7) and that A(V)Ch(X—
U)c U, we have that cZ(h(V))C U and hence A(V) is closed in (X,
r). This implies that V is closed in (X, ) and consequently, F is open
in (X,7).

In Theorem 2.3 of [5] it was shown that if a space (X,7) is semi-
invertible, then (X, z%) is invertible. The converse of this result is also
true.

THEOREM 3.4 A space (X,t) is semi—invertible if and only if (X,
%) is invertible.

Proof. Assume that (X, %) is invertible. By Theorem 1.1 of [5] it
follows that for each nonempty U&S0(X, %), there exists a homeomo-
rphism % : (X, z%) > (X, 7%) such that 2(X— U) < U. Since S0(X, 7%)
=80(X, ) and since by Theorem 2.6 £: (X,7) —> (X, ) is a semi-
homeomorphism, (X, ) is semi-invertible.

COROLLARY 3.5 Let P be a semitopological property belonging to the
class I and let (X, 7) be a semi—invertible space. If a nonempty set UE
r¢ has P, as a subspace of (X,7), then (X,7) has P.

Proof. Since (U,z|U) has P and P is semitopological, (U(r|U)*?)
has P by Corollary 2.7. Noting that (¢|U)e=z2|U, (U,7*|U) has P.
By Theorem 3.4, (X,7®) is invertible and since (U, 72|U) has P and
Pcl, (X,r) has P. Since P is semitopological, (X,7z) has P by
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Corollary 2.7.

In [6] it was shown that separability and T, are semitopological pro-
perties. Since they belong to the class 7, Corollary 3.5 gives us Theo-
rem 2.7 and Theorem 2.6 of [5]. Also, Theorem 3.2 and Theorem
3.3 can be slightly improved by use of Corollary 3.5 since extremal
disconnectedness and a property of spaces being Urysohn are semiregular
and hence are semitopological by Corollary 2. 9.

COROLLARY 3.6 If (X,t) is a semi-invertible space and contains a
nonempty set USze which is Uryohn (resp. extremally disconnected), as
a subspace of (X, ), then (X,7) is Urysohn (resp. extremally discon-
nected ) .

4. Almost-invertible spaces

DEFINITION 4.1 A space (X,7) is almost—invertible if for every none-
mpty regular—open subset U of (X,t) there exists a O-homeomorphism
h:(X,7) —> (X,7) such that h(X—U)CU.

By Theorem 2.2 and Theorem 2.8 we obtain the following basic ch-
aracterization of almost-invertible spaces.

THEOREM 4.2 A space (X, t) is almost—invertible if and only if (X,
7,) is invertible.

As we mentioned earlier, the class of invertible spaces is contained
in the class of semi-invertible spaces. By means of Theorem 2.2, Th-
eorem 2.8 and Theorem 3.4 we see that semi~invertible spaces are alm-
ost-invertible. The following example shows that there are almost-inver-
tible spaces which are not semi-invertible.

EXAMPLE 4.3 Let the plane R2 have the topology generated by the
subbase consisting of the usual open sets together with A= {(0, y) €R? :
y is rational and 0<y<{1} and call this topology 7. Now let X=1IxI
—{(z,y) €R%: 0<{2<{1, 0<y<1} (I=[0,1]) and give X the subspace
topology inherited from (R2,7). Now observe that the semiregulariz-
ation topology 7, associated with (X, 7) is the subspace topology on X
given from R2? with the usual topology. It follows that (X, z) is almost-
invertible since (X, ;) is invertible. To show that (X,z) is not semi-
invertible, note that the set B={(0, ) : y is irrational and 0<y<{1} is



Almost-invertible spaces 97

a nowhere dense set in (X, 7). According to [15], C=(0,1) —B is open
in (X, 7%). But for the open set C in (X, %) there is no semihomeom-
orphism % from (X, ) onto (X, 7) such that A(X—C)<C which shows
that (X, 7) is not semi-invertible.

THEOREM 4.4 If a space (X, 7) is semi-invertible and nowhere dense
subsets of (X, t) are closed, then (X,t) is invertible.

Proof. This follows form Theorem 3.4 and the fact that r=r= if and
only if the' nowhere dense subsets of (X, z) are closed [15].

THEOREM 4.5 If a space (X,7) is almost—invertible and semiregular,
then(X, ) is invertible.

THEOREM 4.5 If a space (X,7) is almost—invertible and dense subsets
of (X,7,) are dense in (X,7), then (X, 1) is semi-invertible.

Proof. If (X,7) and (X, r,) have the same dense sets, they are se-
mihomeomorphic [11] Therefore r*=(z,)¢. Since (X, r,) is invertible,
(X, (z,)9) is invertible and consequently (X, %) is invertible. By Th-
eorem 3.4, (X,7) is semi-invertible.

THEOREM 4.7 If (X, t) is almost—invertible and contains a nonempty
open connected set U, then (X,7) consists of at most two componenets.
If (X,7) is not connected, then V-—=int(cl(U)) and X—V are the com-
ponents of (X,t) and they are (-homeomorphic.

Proof. Noting that connectedness is a semiregular property and that
V=int(cl(U)) is connected, we have by Lemma 2.5 that V is none-
mpty open connected set in (X, z,). If (X,z) is not connected, then
(X, 7,) is not connected and since (X, 7;) is invertible, V and X—V
are the components of (X, ;) and they are homeomorphic by Theorem
2 of [7]. This implies that V and X—V are #-homeomorphic compon-
ents of (X, 7).

A pace (X,7) is called weakly Hausdorff [17] if each x&X has the
form {z} =N{F:2€F and FERC(X,7)}. It is clear that a space
(X, ) is weakly Hausdorff if and only if (X,7,) is T, and that weak
Hausdorfness is a semiregular property. Combining the previous facts,
Theorem 4.6, Theorem 4.7 and Theorem 3 of [7] we obtain the follo-
wing two results.
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THEOREM 4.8 If an almost—invertible space (X, t) is weakly Hausdorff
and contains a nondegenerate open connected subset, then (X,7) is conn-
ected.

THEOREM 4.9 A locally connected weakly Hausdorff almost—invertible
space (X, t) is either connected or the zero—sphere.

Similar to Corollary 3.5 we have the following general result for al-
most-invertible spaces.

THEOREM 4. 10 Let P be a semiregular property belonging to the class
I and let (X,7) be an almost—invertible space. If a nonempty set Uert,
has P, as a subspace of (X,t), then (X,7) has P.

Proof. Since (U,7|U) has P and P is semiregular, (U, (z|U),) has
P. By Lemma 2.4(d) it follows that (U, z,|U) has P. Since (X,7z,)
is invertible by Theorem 4.2 and P&, (X,z,) has P. The semireg-
ularity of P implies that (X, 7) has P.

COROLLARY 4.11 Let (X,7) be an almost-invertible space and suppose
that there exists a UESt, which is, as a subspace of (X,7), Ty (resp.
weakly Hausdorff, Urysohn, extremally disconnected). Then (X,7) is
Ty (rep. weakly Hausdorff, Urysohn, extremally disconnected).

Proof. This follows from the fact that these properties are semiregular
and in the class I along with use of Theorem 4. 10.

Recall that a topological property P is called contagious [4] if a space
(X,7) has P when a dense subset of (X,7) has P.

THEOREM 4.12 Let P be a semiregular, contagious and open finite
unionable topological property and (X,t) be an almost—invertible space.
If a nonempty open set U has P, as a subspace of (X,7), then (X, 1)
has P.

Proof. Denote int(cI(U)) by V. Since U has the contagious property
P and U is dense in V, V has P. The almost-invertibility of (X, 7)
implies hat there exists a #-homeomorphism % : (X, z) — (X, 7) such
that A(X— V)< V. This gives that X=VUh(V). From Theorem 2.5
(a) it follows that |V : V——>A(V) is a 6O-homeomorphism. Since
P is semiregular, (V) has P by Corollary 2.3. Since P is open finite
unionable and X=VUAa(V), (X,z) has P.
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Recall that a space (X,7) is said to be quasi H-closed (resp. lightly
compact) if every open (resp. countable open) cover of (X,z) has a
finite subfamily whose closures cover the space. A space is H-closed if it
is Hausdorff and quasi H-closed. According to [2], quasi H-closedness,
lightly compactness and pseudocompactness are semiregular, contagious
and finite unionable. In [3] it was shown that S-closedness is semireg-
ular, contagious and clopen finite unionable. Since a space (X,7) is
S—closed [3] if every regular—closed cover of (X,r) has a finite sub-
cover, it is not difficult to show, by use of Lemma 2.4(c), that S—clos-
edness is open finite unionable. Combining the previous facts and Theo-
rem 4.12 we obtain the following corollary.

COROLLARY 4.13 Let (X,7) be an almost—invertible space and suppose
that there exists a nonempty open set U which is, as a subspace of (X,
t), quasi H-closed (resp. lightly compact, pseudocompact, S-closed).
Then (X,7) is quasi H-closed (resp. lightly compact, pseudocompact, S-
closed).

COROLLARY 4. 14 H-closedness, quasi H-closedness, lightly compactness,
pseudo—compactness and S—closedness are in the class I.

THEOREM 4.15 Let P be a semiregular and closed finite unionable to-
pological property, let (X,t) be an almost—invertible space and suppose
that there exists a nonempty open subset U of (X,7t) such that cl(U), as
a subspace, has P. Then (X,7) has P.

Proof. If cl(U)=X, the proof is complete. Assume that c/(U) # X
and let 4 : (X,7) —> (X, 7) be an inverting #-homeomorphism for inz
(¢i(U)). Then we have that X=c (U) Uk " (c/(U)). By Lemma 2.5
(b), A Y (U) :el(U) —> k71 (cl(U)) is a f~homeomorphism. Since
P is semiregular, by Corollary 2.3 it follows that A~1(c/(U)) has P.
Since P is closed finite unionable and X=cl(U) UA1(I(U)), (X, 1)
has P.

COROLLARY 4.16 Let (X, ) be an almost-invertible space and suppose
that there exists a nonempty open subset U of (X,7) such that cl(U),
as a subspace, is H-closed (resp. quasi IH-closed, lightly compact, pseu-
docompact). Then (X, 7) is H-closed (resp. quasi Fi-closed, lightly com-
pact, pseudocompact) .
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A Hausdorff space (X, 1) is locally H-closed [16] if for each z€X
there exists an open set U containing z such that ¢/(U) is H-closed.
The following result is an immediate consequence of Corollary 4. 16.

COROLLARY 4.17 Locally H-closed almost~invertible spaces are H-
closed.

A Urysohn (resp. completely Hausdorff) space is called Urysohn—
closed [1] (resp. completely Hausdorff-closed [1]) provided it is closed
in every Urysohn (resp. completely Hausdorff) space in which it can

be embeded.

LEMMA 4.18 If A;(i=1,2,...,n) is a Urysohn-closed (resp. completely
Hausdorff-closed) subspace of a Urysohn (resp. completely Hausdorff)
space (X,7) and X=_ng A;, then (X,7) is Urysohn—closed (resp. com-
pletely Hausdor(f—closed) .

Proof. We prove only the first part of the lemma since the proof of
the second part is analogous. Suppose that there is a homeomorphism
h: (X,7) —> Y embedding (X, ) in a Urysohn space Y. Clearly 4|
A;r Ay —> h(A4;) is a homeomorphism and since A; is Urysohn-closed,

h(A;) is closed in Y. This implies that A(X) = 'Lijlh(A,-) is closed in
Y. Therefore (X, 1) is Urysohn—closed.

Combining Theorem 3.1, Theorem 3.2 and Lemma 4.18 it is not
difficult to show the following result.

COROLLARY 4.19 Urysohn—closedness is in the class I1NJ.

COROLLARY 4.20 Let (X,7) be an invertible completely Hausdorff-
closed space and suppose that there exists a nonempty set U which is com-
pletely-Hausdorff-closed as a subspace of (X,7). Then (X,7) is com-
pletely Hausdorff-closed.

LemMma 4.21 ([9], [101). Urysohn—closedness and complete Hausdorff-

closedness are semiregular.

THEOREM 4. 22 Let (X, t) be an almost—invertible space and suppose
that there exists a nonempty open subset U of (X,7) such that cl(U),
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as a subspace, is Urysohn—closed. Then (X,7) is Urysohn—closed.

Proof. Since a property of spaces being Urysohn is hereditary, int(cl
(U)) is Urysohn. By Corollary 4.11, (X, r) is Urysohn. From The-
orem 4.2, Lemma 4.21 and Theorem 4.15 it follows that (X,7) is
Urysohn-closed.

THEOREM 4. 23 Let (X,7) be an almost—invertible completely Hausdorlf
space and suppose that there exists a nonempty open set U of (X,t) such
that ¢l(U), as a subspace, is completely Hausdorff-closed. Then (X, 1)
is completely Hausdorff—closed.
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