PUSAN KYÖNGNAM MATHEMATICAL JOURNAL Vol. 2, 97-102, 1986

A NOTE ON FUNCTION SPACES

DO WON LEE, JE YOON LEE AND KEUN PARK

1. Introduction and preliminaries

For the topological spaces X and Y, let Y^x be the family of all continuous functions from X to Y with the compactopen topology, and let w be the evaluation map of Y^x .

In this note, we will give an example in which the graph of the evaluation map of Y^x is not closed (See [1], problem 3 in section 1 in p. 276.). And also, in case of Y=I (the closed unit interval), we will give an example in which the evaluation map of I^x is continuous, but X is not locally compact (See [1], example 1 in p. 260.).

Throughout this note, all topological spaces are assumed to be Hausdorff.

DEFINITION I [1]. For each pair of sets $A \subset X$, $B \subset Y$, let $(A, B) = \{ f \in Y^x | f(A) \subset B \}$. The compact-open topology in Y^x is that having as sub-basis all sets (A, V), where $A \subset X$ is compact and $V \subset Y$ is open.

DEFINITION 2 [1]. For any two topological spaces X, Y, the map $w: Y^x \times X \rightarrow Y$ defined by w(f, x) = f(x) is called the evaluation map of Y^x .

THEOREM 1 [1]. If X is locally compact, then the evaluation map $w: Y^X \times X \to Y$ is continuous.

For a map f from X to Y, the subset $\{(x, f(x))|x \in X\}$ of $X \times Y$ is called the graph of f and denoted by G(f). THEOREM 2 [2]. If f is a continuous function from X to Y, then G(f) is closed.

THEOREM 3 [2]. Let $f: X \rightarrow Y$ be a function. If Y is compact and G(f) is closed, then f is continuous.

2. Main results

The following example is given in [3], as an example in which the evaluation map of Y^x is not continuous. Furthermore, we will show that the example is a counter-example for the problem, "Let Y be Hausdorff. If the compact-open topology is used in Y^x , then $G(w) = \{(f, x, y) | f(x) = y\} \subset Y^x \times X \times Y$ is closed."

EXAMPLE 1. Let Y=R(set of all real numbers) with the usual topology and X=Q(set of all rational numbers) with the relative topology of R. We will show that $G(w) = \{(f, x, y) | f(x)=y\}$ is not closed. Suppose that G(w) is closed, and let $j:Q \to R$ be the inclusion map, then $j \in \mathbb{R}^q$ since j is continuous. Since $j(0) \neq 1$, we have $(j, 0, 1) \notin G(w)$. By the closedness of G(w), there exist a basic open neighborhood $\bigcap_{i=1}^{n} (K, W_i)$ of j, where K_i is compact in Q and W_i is open in R, an open neighborhood U of 0 in Q and an open neighborhood W of 1 in R such that $(j, 0, 1) \in \bigcap_{i=1}^{n} (K_i, W_i) \times U \times$ W and $\bigcap_{i=1}^{n} (K_i, W_i) \times U \times W \cap G(w) = \phi$. Since $j \in \bigcap_{i=1}^{n} (K_i, W_i)$, we have $K_i = j(K_i) \subset W_i$ for each $i=1, 2, \cdots, n$. If $K = \bigcup_{i=1}^{n} K_i \supset$ U, then K is a compact neighborhood of 0 in Q. But 0 has no compact neighborhood in Q, and so $K \neq U$. Hence, there exists an $x \in U-K$. By the closedness of K, there exists a

98

basic open set $B(x, \delta) = \{y \in Q | |y - x| < \delta\}$ such that $B(x, \delta) \cap K = \phi$.

Define $f: Q \rightarrow R$ given by

$$f(r) = \begin{pmatrix} 1 + \frac{1 - x + \delta}{\delta} (r - x) & \text{if } r \in B(x, \delta) \text{ and } r \leq x, \\ 1 + \frac{x - 1 + \delta}{\delta} (r - x) & \text{if } r \in B(x, \delta) \text{ and } r > x, \\ r & \text{if } r \notin B(x, \delta). \end{cases}$$

Then $f \in \mathbb{R}^{q}$, and for each i=1, 2, ..., n, we have $f(K_{i}) = K_{i}$ since $B(x, \delta) \cap K_{i} = \phi$ for any i=2, ..., n and $f|_{Q-B(x, \delta)} = j$. Since $K_{i} \subset W_{i}$, we have $f \in \bigcap_{i=1}^{n} (K_{i}, W_{i})$, and so, $(f, x, 1) \in \bigcap_{i=1}^{n} (K_{i}, W_{i}) \times U \times W$.

But $(f, x, 1) \in G(w)$ since f(x) = 1. This is impossible, so G(w) is not closed.

Next, in order to give a counter-example for the "only if" part of the remark, " $w: I^x \times X \rightarrow I$ is continuous if and only if X is locally compact."(the "if" part of the remark is obviously true by Theorem 1), the following Theorem is necessary.

THEOREM 4. If Y is compact, then $w: Y^{x} \times X \rightarrow Y$ is continuous if and only if G(w) is closed.

PROOF: Obvious by Theorem 2 and Theorem 3.

EXAMPLE 2. Let $X = \{(x, y) | y \ge 0, x, y \in Q\}$ and fix some irrational number θ . Topologize on X with the topology generated by ε -neighborhoods of the form $N_{\varepsilon}((x, y)) = \{(x, y)\} \cup B_{\varepsilon}\left(x + \frac{y}{\theta}\right) \cup B_{\varepsilon}\left(x - \frac{y}{\theta}\right)$ where $B_{\varepsilon}(t) = \{r \in Q | |r - t| < \varepsilon\}$, Q being the rationals on the x-axis. This topology is called "Irrational Slope Topology (see[4])". Each $N_{\varepsilon}((x, y))$ consists of $\{(x, y)\}$ plus two intervals on the rational x-axis centered at the two irrational points $x \pm y/\theta$; the lines joining these points to (x, y) have slope $\pm \theta$.

For the topological space X, the followings are easily shown in [4].

1) X is Hausdorff.

2) X is not completely regular.

3) Every real-valued continuous function on X is constant. By 2), we have that X is not locally compact. If we show that the graph of the evaluation map of I^x is closed, then the evaluation map of I^x is continuous by Theorem 4.

Let $(f, x, t) \notin G(w)$, then $f(x) \neq t$. Hence, there exist the open neighborhoods U, V of f(x), t, respectively, such that $U \cap V = \phi$, so $(\{x\}, U) \times X \times V$ is an open-neighborhood of (f, x, t). And also, if $(g, x', t') \in (\{x\}, U) \times X \times V$, then $g(x) \in U, x' \in X$ and $t' \in V$. By $U \cap V = \phi$ and 3), we have $g(x') = g(x) \neq t'$, therefore $(g, x', t') \notin G(w)$. Hence, G(w)is closed.

The following is obtained under the hypothesis that X is completely regular.

THEOREM 2. If X is completely regular, then the evaluation map $w: \mathbb{R}^{x} \times X \rightarrow \mathbb{R}$ is continuous if and only if X is locally compact.

PROOF: Only the sufficiency requires proof. Suppose that X is not locally compact, then there exists an $x \in X$ which has no compact neighborhood. Define $f: X \to R$ given by f(x)=0 for any $x \in X$, and let $W = \left(-\frac{1}{2}, \frac{1}{2}\right)$. Since w is continuous at (f, x) and w(f, x) = f(x)=0, there exist a neighborhood $\bigcap_{i=1}^{n} (K_i, U_i)$ of f and a neighborhood V of x

100

such that $w(\bigcap_{i=1}^{n}(K_{i}, U_{i}) \times V) \subset W$. Since x has no locally compact neighborhood, we have $\bigcup_{i=1}^{n} K_{i} \not\supseteq V$. Hence $V - \bigcup_{i=1}^{n} K_{i}$ $\neq \phi$, and let $y \in V - \bigcup_{i=1}^{n} K_{i}$. Since X is completely regular and $\bigcup_{i=1}^{n} K_{i}$ is closed in X, there exists a $g \in R^{X}$ such that $g(\bigcup_{i=1}^{n} K_{i}) = \{0\}$ and g(y) = 1. Hence $g(\bigcup_{i=1}^{n} K_{i}) = \{0\} \subset U_{i}$ for any i = $1, 2, \dots, n$, and so $g \in \bigcap_{i=1}^{n} (K_{i}, U_{i})$ and $y \in V$, but w(g, y) = $g(y) = 1 \notin W$. This is impossible, and so X is locally compact. REMARK. In the above theorem, the complete regularity of

X is essential by the example 2.

COROLLARY. For the completely regular space X, the followings are equivalent.

- (1) The evaluation map $w: I^{x} \times X \rightarrow I$ is continuous.
- (2) The evaluation map w has the closed graph.
- (3) X is locally compact.

References

- [1] Dugundji, J., Topology, Allyn and Bacon, Boston, 1966.
- [2] Husain, T., Topology and maps, Plenum Press, New York and London, 1977.
- [3] Maunder, O.R.F., Algebraic Topology, Van Nostrand-Reinhold, London, 1970.
- [4] Steen, A. L., and Seebach, J. A. Jr., Counterexamples in Topology, New York, Holt, Rinehart and Winston, 1970.

Department of Mathematics University of Ulsan Ulsan 690 Korea