Vol. 2, 87—96, 1986

A NOTE ON M-HYPONORMAL OPERATORS IN HILBERT SPACE

YOUNG SIK PARK AND JE YOON LEE

1. Introduction

In this paper H is a separable, infinite dimensional complex Hilbert space with inner product (\cdot, \cdot) , and the Banach algebra of all bounded linear operators on H will be denoted by L(H). $T \in L(H)$ is called dominant by J. Stamfli and B. Wadhwa if, for all complex λ , $\operatorname{ran}(T-\lambda)\subset \operatorname{ran}(T-\lambda)^*$ or, equivalently, if there exists a positive number M, such that $||(T-\lambda)^*f|| \leq M_{\lambda}||(T-\lambda)f||$ for all f in H. If there exists a constant $M \geq 1$ such that $M_{\lambda} \leq M$ for all λ , T is called Mhyponormal, and if M=1, T is hyponormal. The purpose of the present note is to give several properties of M-hyponormal operators, and show some relations when T is of Mpower class (N) or T is of class (N). Therefore we know that an M-power class is strictly larger than the class of hyponormal operators.

2. Preliminaries

LEMMA 2.1 [13]. If T is an M-hyponormal operator, then (1) Tx=zx implies that $T^*x=\bar{z}x$ for all $z\in C$ and (2) ||(T

$$|-z|x||^{n+1} \le M^{\frac{n(n+1)}{2}} ||(T-z)^{n+1}x||$$
 for all $z \in C$, $n=1,2,\cdots$.

LEMMA 2.2. T is an M-hyponormal operator if and only if $M^2(T-z)^*(T-z)-(T-z)(T-z)^* \ge 0$ for all $z \in C$.

LEMMA 2.3 [11]. From Lemma 2.2 the following statements are each equivalent to each other;

(1) T is an M-hyponormal operator,

(2) For each $z \in C$, there exists an operator $A_z \in L(H)$ such that $T-z = (T-z)^*A_z$.

LEMMA 2.4 [12, Theorem B]. If T and T^* are M-hyponormal operators, then T is normal.

We shall now give an example of an *M*-hyponormal operator which is not hyponormal.

EXAMPLE 2.5 [13]. Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis of a Hilbert space. Let T be a weighted shift defined by $Te_1=e_2$, $Te_2=2e_3$, and $Te_i=e_{i+1}$ for $i\geq 3$. Then $T^*e_1=0$, $T^*e_2=e_1$, $T^*e_3=2e_2$ and $T^*e_i=e_{i-1}$ for $i\geq 4$.

3. Properties of M-hyponormal operators

LEMMA 3.1 [5]. From Lemma 2.3 an operator A_z is constructed as follows;

(1) $A_z^*((T-z)x) = (T-z)^*x$, (2) $A_z^*y = 0$ for every $y \in (ran(T-z))^{\perp}$, and (3) $||A_z|| \le \lambda$.

THEOREM 3.2. T is an M-hyponormal operator if and only if there exists a positive contraction P such that $(T-z)(T-z)^*=P(T-z)^*(T-z)$ and P commutes with $(T-z)^*(T-z)$.

88

PROOF. If T is an M-hyponormal operator, we have $((T - T)^{-1})^{-1}$ $z(T-z)^{*})^{2} \leq M^{4}((T-z)^{*}(T-z))^{2}$, that is, $((T-z)(T-z)^{*})^{*}$ $z)^{*}((T-z)(T-z)^{*})^{*} \leq (M^{2})^{2}((T-z)^{*}(T-z)) ((T-z)^{*}(T-z))$ (-z))*. It follows from Lemma 3.1 (1) that (T-z)(T-z)* $=(T-z)^{*}(T-z)A_{z}$, and so we have $(T-z)(T-z)^{*}=A_{z}^{*}$ $(T-z)^*(T-z)$. So we put $P=A_i^*$. Then it is clear by lemma 3.1 (2) that $(P(x_1+x_2), x_1+x_2) = (Px_1, x_1) + (Px_1, x_2)$ $+(Px_{2},x_{1})+(Px_{2},x_{2})=(Px_{1},x_{1})\geq 0$ for every $x_{1}\in \overline{ran(T)}$ $\overline{-z}^{*}(T-z)$ and $x_2 \in (\operatorname{ran}(T-z)^{*}(T-z))^{\perp}$. Also, we have by Lemma 3.1 (3) that $||A_{z}^{*}|| = ||A_{z}|| \le \lambda$, and thus $P = A_{z}^{*}$ is a positive contraction. Since P is a positive operator on H, P is self-adjoint, that is, $A_z^* = A_z$. Thus we have P(T) $(T-z)^{*}(T-z) = (T-z)(T-z)^{*} = ((T-z)(T-z)^{*})^{*} = (P(T-z)^{*})^{*}$ z)*(T-z))*=(T-z)*(T-z)P, hence P commutes with (T-z)-z)*(T-z). Conversely, if there exists a positive contraction P such that $(T-z)(T-z)^* = P(T-z)^*(T-z)$ and P commutes with $(T-z)^*(T-z)$, then we have $((T-z)(T-z)^*(T-z))^*(T-z)^$ $(z)^{*})^{2} = P^{2}(T-z)^{*}(T-z))^{2} \le ((T-z)^{*}(T-z))^{2} \le M^{4}((T-z))^{2}$ $(T-z)^2$ for positive number M. Therefore $(T-z)(T-z)^*$ $\leq M^2(T-z)^*(T-z)$, and thus it follows from Lemma 2.2 that T is an M-hyponormal operator on H.

LEMMA 3.3 [1, Proposition 2]. If T is a bounded linear operator such that T^*T commutes with T^*+T then $4T^*T - (T^*+T)^2 \ge 0$.

LEMMA 3.4 [11, Corollary 8]. If T is M-hyponormal, N is normal and TN=NT then T+N is an M-hyponormal operator.

THEOREM 3.5. If T is an M-hyponormal operator such that T^*T commutes with T^*+T and TC=CT, where C is any one root of the equation $(z-T^*)(z-T)=0$ for $z \in$

C, then $T+C^*$ is an M-hyponormal operator.

PROOF. If T is a bounded linear operator such that T^*T_r , commutes with T^*+T , it follows from Lemma 3.3 that $4T^*$ $T-(T^*+T)^2 \ge 0$. Put $C = \frac{(T^*+T)+i\sqrt{4T^*T-(T^*+T)^2}}{2}$

Then it is clear that C is normal, and also C^* is normal. From [3] it is obvious that $TC^*=C^*T$, hence it follows from Lemma 3.4 that $T+C^*$ is an M-hyponormal operator.

COROLLARY 3.6. If T and T* are M-hyponormal operators then $T+T^*$ is an M-hyponormal operator.

PROOF. Since T and T^* are M-hyponormal operators, it follows from Lemma 2.4 that T is normal, and thus $T+T^*$ is an M-hyponormal operator.

LEMMA 3.7 [12, Theorem 1]. Let T be M-hyponormal and suppose that $TX=XT^*$ for $X \in L(H)$. Then $T^*X=XT$.

LEMMA 3.8. If A and B are M-hyponormal and $AX = XB^*$ for $X \in L(H)$, then $A^*X = XB$.

PROOF. From Lemma 3.7.

THEOREM 3.9. If T and A cre M-hyponormal and TA_z = A_zA^* where A_z is a bounded linear operator in Lemma 3.1, then $\overline{ranA_z}$ reduces T and Ker(T-z) reduces A.

PROOF. It follows from Lemma 3.8 that $TA_zA_z^* = A_zA^*A_z^*$ = $A_zA_z^*T$, and thus T commutes with $A_zA_z^*$. Since $A_zA_z^*$ is self-adjoint, $A_zA_z^*$ is normal, and $\overline{ran(A_zA_z^*)} = \overline{ranA_z}$. Therefore $A_zA_z^*$ is the projection on $\overline{ran} A_z$. Since T commutes with $A_zA_z^*$, $\overline{ran} A_z$ reduces T. Similarly, it is obvious by Lemma 3.8 that $A_z^*A_zA = A_z^*T^*A_z = (TA_z)^*A_z =$ $AA_z^*A_z$, and thus A commutes with $A_z^*A_z$. Also $A_z^*A_z$ is normal and Ker $(A_z^*A_z) = \text{Ker}A_z$. Thus $A_z^*A_z$ is the projection on Ker A_z . Since A commutes with $A_z^*A_z$, Ker A_z

90

reduces A. From Lemma 3.1 R.G. Douglas [2] has obtained that there exists a unique bounded operator A_z such that Ker $A_z = \text{Ker}(T-z)$. Therefore Ker(T-z) reduces A.

THEOREM 3.10. Let A and B be M-hyponormal operators such that $AX=XB^*$ for $X \in L(H)$. Then A is a linear combination of four unitary operators each of which commutes with XX^* .

PROOF. By Lemma 3.8, A commutes with XX* and XX* is normal. Let A=H+iJ be the Cartesian decomposition of A, where $H=-\frac{1}{2}(X+X^*)$ and $J=\frac{1}{2i}(X-X^*)$. Then H and J commute with XX*. It can assumed that H and J are contractions, and thus $H\pm i(I-H^2)^{\frac{1}{2}}$ and $iJ\pm (I-J^2)^{\frac{1}{2}}$ are unitary, commutes with XX*. Since $2A = (H+i(I-H^2)^{\frac{1}{2}}) + (H-i(I-H^2)^{\frac{1}{2}}) + (iJ+(I-J^2)^{\frac{1}{2}}) + (iJ-(I-J^2)^{\frac{1}{2}}) = 2H+2iJ,$ $A = \text{span}\{(H+i(I-H^2)^{\frac{1}{2}}), (H-i(I-H^2)^{\frac{1}{2}}), (iJ-(I-J^2)^{\frac{1}{2}})\}.$

We shall consider a class \mathcal{L} of operators T satisfying the inequality $T^*T \ge (ReT)^2$. By Che-Kao Fong, Vasile I. Istratescu [10] every hyponormal operator is in \mathcal{L} . Now we shall show an example of an M(=3)-hyponormal operator T if T is in \mathcal{L} .

LEMMA 3.11 [10, Proposition 2.1]. If T is in \mathcal{L} and z is a real number, then T-z is in \mathcal{L}

EXAMPLE 3.12. Let $T \in L(H)$ be in \mathcal{L} . Then T is an M (=3)-hyponormal operator.

PROOF. If z is real number, by Lemma 3.11 it sufficient to consider the case when z=0. Then we have $(||T^*x||-||T^*x||^2 + ||Tx||^2 - 2||T^*x|| + ||x|| \le ||(T+T^*) x||^2 = ||2Re Tx||^2 - 4(Re T)^2(x, x) \le 4(T^*Tx, x) = (2||Tx||)^2$, and thus $||T^*x|| \le 3||Tx||$. Therefore it is clear that $||(T-z)^*x||^2 + ||Tx||^2 + ||Tx||$

 $|| \le 3||(T-z)x||$ for all $x \in H$ and all real number z, hence T is an M(=3)-hyponormal operator.

COROLLARY 3.13. Let $T \in L(H)$ be in \mathcal{L} . $If(T-z)^n x=0$ for all real number z and some $n \ge 1$. Then $T^*x = \overline{z}x$.

PROOF. It follows from Example 3.12 that T is a 3-hyponormal operator. From Lemma 2.1 (2) it is clear that $||(T-z)x||^{n+1} \le 3^{\frac{n(n+1)}{2}} ||(T-z)^{n+1}x||$, and so $||(T-z)x||^{n+1} = 0$ implies Tx = zx. Thus, in view of Lemma 2.1 (1), Tx = zx implies $T^*x = \bar{z}x$.

4. An operator of M-power class (N)

We consider the following subset of M-hyponormal operators; T satisfies the addition property that for all z in the complex plane, all integers n and all $x \in H$, $||(T-z)^n x||^2 \leq$ $M||(T-z)^{2n}x|| ||x||$. We call an operator with these properties an operators of M-power class (N). [8]. From a class of operators on H the operator T is said to be of class (N)if $x \in H$, ||x|| = 1, $||Tx||^2 \leq ||T^2x||$. [9].

LEMMA 4.1. [6, Lemma 2] Let T be of class (N). Then $||T^{n+1}x||^2 \ge ||T^nx||^2||T^2x||$ for every unit vector $x \in H$ and $n \ge 1$.

LEMMA 4.2. If T is of M-power class (N), then the spectral radius r(T) of T is not equal to ||T||. But if T is of class (N), then ||T|| = r(T).

PROOF. We can assume without loss of generality that ||T|| = 1. It follows from [9, Lemma] that there exists a sequence $\{x_n\}$ such that $||x_n||=1$ and $\lim_{n \to \infty} ||Tx_n||=1$. Since T is of M-power class (N), it is obvious that $1 = \lim_{n \to \infty} ||Tx_n||^2 \le M \lim_{n \to \infty} ||T^2x_n||$ which yields $||T^2|| \ge \frac{1}{M}$. For all integer n we have

92

$$||T^{2n}|| \ge \frac{1}{M2^{n}-1} \text{ by induction. Thus } r(T) = \lim_{n \to \infty} ||T^{n}||^{\frac{1}{n}} = \lim_{n \to \infty} ||T^{2n}||^{\frac{1}{2n}} = \lim_{n \to \infty} ||T^{n}||^{\frac{1}{n}} = \lim_{n \to \infty} ||T^{n}||^{\frac{1}{2n}} = \lim_{n \to \infty} ||T^{n}||^{\frac{1}{2n}} = 1. \text{ Since}||T|| = 1, \quad \frac{1}{M}$$

$$||T|| = \frac{1}{M} \le 1 \le r(T), \text{ that is, } \frac{1}{M} ||T|| \le r(T). \text{ If } T \text{ is of } class (N), \text{ then the inequality } ||Tx||^{n} \le ||T^{n}x|| \text{ holds for } n$$

$$= 2. \text{ Suppose that for the case } n = k \text{ the inequality } ||Tx||^{k} \le ||T^{k}x|| \text{ holds. If } n = k+1, \text{ then it follows Lemma 4.1 that } ||T^{k+1}x||^{2} \ge ||T^{k}x||^{2} ||T^{2}x|| \ge ||Tx||^{2k} ||Tx||^{2} = ||Tx||^{2(k+1)}, \text{ and so the inequality } ||T^{k+1}x|| \ge ||Tx||^{k+1} \text{ holds. Therefore, we have } r(T) = \lim ||T^{k}||^{\frac{1}{n}} = ||T||$$

EXAMPLE 4.3. [8]. From Example 2.5 T is of M-power class (N) and $r(T) \neq ||T||$.

EXAMPLE 4.4. Let T be a hyponormal operator. Then T is of class (N) and r(T) = ||T||.

PROOF. Since $||Tx||^2 = (Tx, Tx) = (T^*Tx, x) \le ||T^*Tx|| \le ||T^2x||$, T is of class (N). It is clear, by Lemma 4.2, that r(T) = ||T||.

LEMMA 4.5. [8, Theorem 2.1] If T is of M-power class (N) and $T^{-1} \in L(H)$, then T^{-1} is also of M-power class (N).

THEOREM 4.6. If T is of M-power class (N) and $T^{-1} \in L(H)$, then $m_T = \{x: ||T^{-n}x|| \le M||x||, n=2, 3, \cdots, ||T^{-1}x|| = M\}$ is invariant under T^{-1}

PROOF. If T is of M-power class (N), it follows from Lemma 4.5 that T^{-1} is of M-power class (N). Let $x \in m_T$ and ||x||=1. Then we have $||T^{-n}x||^2 \leq M||T^{-2n}x||$, and thus also $||T^{-n}(T^{-1}x)||^2 \leq M||T^{-2(n+1)}x||$. It is clear, from the Definition of m_T that $||T^{-2n-1}|| = \sup_{||T||=1} ||T^{-2n-1}x|| \leq M$. Thus we

have
$$\frac{1}{M} ||T^{-(a+1)}x||^2 \le ||T^{-2(a+1)}x|| \le ||T^{-2a-1}||||T^{-1}x|| \le M$$

 $||T^{-1}x||$. Since $||T^{-1}x|| = M \ge 1$, it follows that $||T^{-n}(T^{-1}x)|| \le M^2 ||T^{-1}x|| \le M^2 ||T^{-1}x||^2$, hence $||T^{-n}(T^{-1}x)|| \le M ||T^{-1}x||$. Therefore, $T^{-1}x \in m_T$, m_T is invariant under T^{-1} .

REMARK 4.7. If T is of M-power class (N) and $T^{-1} \in L$ (H), then $||(T-z)^{*-1}x||^2 \le M^3 ||(T-z)^{-2}x||$ for all $x \in H$, ||x|| = 1, and for all z in resolvent set of T, $\rho(T)$.

PROOF. It follows from Lemma 4.5 that T^{-1} is of *M*-power class (*N*), and so we have $||(T-z)^{-1}x||^2 \leq M||(T-z)^{-2}x||$ for all $z \in \rho(T)$ and for n=1. Since *T* is *M*-hyponormal, it is clear, by the inequality; $(T-z)(T-z)^* \leq M^2(T-z)^*(T-z)^*$, that $(T-z)^{-1}(T-z)^{*-1} \leq M^2(T-z)^{*-1}(T-z)^{-1}$ holds, hence it follows that $||(T^*-z)^{-1}x|| \leq M||(T-z)^{-1}x||$ for all $z \in \rho(T)$. Thus, we have $||(T^*-z)^{-1}x||^2 \leq M^2||(T-z)^{-1}x||^2 \leq M^3||(T-z)^{-2}x||$ for all $z \in \rho(T)$.

References

- [1] Stephen L. Campbell and Ralph Gellar, Spectral properties of linear operators for which T*T and T+T* commute, Proc. A. M. S, 60, (1976), 197-202.
- [2] R.G. Douglas, On majorization, factorization, and range inclusion of operators on a Hilbert space, Proc. A.M.S, 17, (1966), 413-415.
- [3] H. R. Dowson, Spectral theory of linear operators, Academic Press, 1978.
- [4] Peter A. Fillmore, Notes on operator theory, Van Nostrand Reinhold Com., 1970.
- [5] Masatoshi Fujii and Yasuhiko Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad., 51, (1975), 243-246.
- [6] Takayuki Furuta, On the class of paranormal operators, Proc. Japan Acad., 43, (1967), 594-598.

- [7] Gilbert Helmberg, Introduction to spectral theory in Hilbert space, North-Holland Pub. Com., 1967.
- [8] Vasile I. Istrătescu, Some results on M-hyponormal operators, Mathematics Seminer Notes, 6, (1978), 77-86.
- [9] _____, On some hyponormal operators, Paci. J. M., 22, (1967), 413-417.
- [10] Che-Kao Fong and V. I. Isträtescu, Some characterizations of hermition operators and related classes of operators, I, Proc. A. M. S, 71, (1979), 107-112.
- [11] Che-kao Fong, On M-hyponormal operators, Studia Mathematica, LXV, (1979), 1-5.
- [12] R. L. Moore, D. D. Rogers and T. T. Trent, A note on intertwining M-hyponormal operators, Proc. A. M. S, 83, (1981), 514-516.
- [13] Bhushan L. Wadhwa, M-hyponormal_operator, Duke. Math, 41, (1974), 655-660.

Department of Mathematics University of Ulsan. Ulsan 690 Korea