A NOTE ON M-HYPONORMAL OPERATORS IN HILBERT SDACE

Young Sik Park and Je Yoon Lee

1. Introduction

In this paper H is a separable, infirite dimensional complex Hilbert space with inner product (\cdot, \cdot), and the Banach algebra of all bounded linear operators on H will be denoted by L (H). $T \in L(H)$ is called dominant by J. Stamfli and B. Wadhwa if, for all complex $\lambda, \operatorname{ran}(T-\lambda) \subset \operatorname{ran}(T-\lambda)^{*}$ or, equivalently, if there exists a positive number M. such that $\left\|(T-\lambda)^{*} f\right\| \leq M_{\lambda}\|(T-\lambda) f\|$ for all f in H. If there exists a constant $M \geq 1$ such that $M_{\lambda} \leq M$ for all λ, T is called M hyponormal, and if $M=1, T$ is hyponormal. The purpose of the present note is to give several properties of M-hyponormal operators, and show some relations when T is of M power class (N) or T is of class (N). Therefore we know that an M-power class is strictly larger than the class of hyponormal operators.

2. Preliminaries

Lemma 2.1 [13]. If T is an M-hyponormal operator, then (1) $T x=z x$ implies that $T^{*} x=\bar{z} x$ for all $z \in C$ and (2) $\|(T$ $\left.-z) x\left\|^{n+1} \leq M^{\frac{n(n+1)}{2}}\right\|(T-z)^{n+1} x\right\}$ for all $z \in C, n=1,2, \cdots$.
Lemma 2.2. T is an M-hyponormal operator if and only if $M^{2}(T-z)^{*}(T-z)-(T-z)(T-z)^{*} \geq 0$ for all $z \in C$.

Proof. If T is M-hyponormal, then there exists a positive number M such that $\left\|(T-z)^{*} x\right\| \leq M| |(T-z) x \|$ for all x $\in H$ and for all $z \in C$, and so $\left\|(T-z)^{*} x\right\|^{2}=\left((T-z)^{*} x\right.$, $\left.(T-z)^{*} x\right) \leq M^{2}((T-z) x,(T-z) x)$, and thus we have M^{2} $(T-z)^{*}(T-z)-(T-z)(T-z)^{*} \geq 0$. Conversely, if $M^{2}(T$ $-z)^{*}(T-z)-(T-z)(T-z)^{*} \geq 0$, then $M^{2}\left((T-z)^{*}(T-z)\right.$ $\left.\left.-(T-z)(T-z)^{*}\right) x, x\right) \geq 0$, and so we have $\left\|(T-z)^{*} x\right\|^{2}$ $\pm M^{2}\|(T-z) x\| \|^{2}$. Thus T is an M-hyponormal operator.
Lemma 2.3 [11]. From Lemma 2.2 the following statements are each equivalent to each other;
(1) T is an M-hyponormal operator,
(2) For each $z \in C$, there exists an operator $A_{z} \in L(H)$ such that $T-z=(T-z) * A_{z}$.

Lemma 2.4 [12, Theorem B]. If T and T* are M-hyponormal operators, then T is normal.

We shall now give an example of an M-hyponormal operator which is not hyponormal.

Example 2.5 [13]. Let $\left\{e_{t}\right\}_{i=1}^{\infty}$ be an orthonormal basis of a Hilbert space. Let T be a weighted shift defined by $T e_{1}=e_{2}, T e_{2}=2 e_{3}$, and $T e_{1}=e_{i+1}$ for $i \geq 3$. Then $T * e_{1}=0$, $T^{*} e_{2}=e_{1}, T^{*} e_{3}=2 e_{2}$ and $T^{*} e_{1}=e_{i-1}$ for $i \geq 4$.

3. Properties of M-hyponormal operators

Lemma 3.1.[5]. From Lemma 2.3 an operator A_{z} is constructed as follows;
(1) $A_{z}^{*}((T-z) x)=(T-z)^{*} x$,
(2) $A_{2}{ }^{*} y=0$ for every $y \in(\operatorname{ran}(T-z))^{2}$, and (3) $\left\|A_{2}\right\| \leq \lambda$.

Theorem 3.2. T is an M-hyponormal operator if and only if there exists a positive contraction P such that (T_{-} $z)(T-z)^{*}=P(T-z)^{*}(T-z)$ and P commutes with ($T-$ $z)^{*}(T-z)$.

Proof. If T is an M-hyponormal operator, we have ($(T-$ $\left.z)(T-z)^{*}\right)^{2} \leq M^{4}\left((T-z)^{*}(T-z)\right)^{2}$, that is, $((T-z)(T-$ $z)^{*}\left((T-z)(T-z)^{*}\right)^{*} \leq\left(M^{2}\right)^{2}\left((T-z)^{*}(T-z)\right)\left((T-z)^{*}(T\right.$ $-z)^{*}$. It follows from Lemma 3.1 (1) that $(T-z)(T-z)^{*}$ $=(T-z)^{*}(T-z) A_{z}$, and so we have $(T-z)(T-z)^{*}=A_{z}^{*}$ $(T-z)^{*}(T-z)$. So we put $P=A_{z}^{*}$. Then it is clear by lemma 3.1 (2) that $\left(P\left(x_{1}+x_{2}\right), x_{1}+x_{2}\right)=\left(P x_{1}, x_{1}\right)+\left(P x_{1}, x_{2}\right)$ $+\left(P x_{2}, x_{1}\right)+\left(P x_{2}, x_{2}\right)=\left(P x_{1}, x_{1}\right) \geq 0$ for every $x_{1} \in \overline{\operatorname{ran}(T}$ $-z)^{*}(T-z)$ and $x_{2} \in\left(\operatorname{ran}(T-z)^{*}(T-z)\right)^{\perp}$. Also, we have by Lemma 3. I (3) that $\left\|A_{z}{ }^{*}\right\|=\left\|A_{2}\right\| \leq \lambda$, and thus $P=A_{z}{ }^{*}$ is a positive contraction. Since P is a positive operator on H, P is self-adjoint, that is, $A_{z}{ }^{*}=A_{z}$. Thus we have $P(T$ $-z)^{*}(T-z)=(T-z)(T-z)^{*}=\left((T-z)(T-z)^{*}\right)^{*}=\langle P(T-$ $z)^{*}(T-z)^{*}=(T-z)^{*}(T-z)^{p}$, bence P commutes with $(T$ $-z)^{*}(T-z)$. Conversely, if there exists a positive contraction P such that $(T-z)(T-z)^{*}=P(T-z)^{*}(T-z)$ and P commutes with $(T-z) *(T-z)$, then we have $((T-z)(T-$ $\left.\left.z)^{*}\right)^{2}=P^{2}(T-z)^{*}(T-z)\right)^{2} \leq\left((T-z)^{*}(T-z)\right)^{2} \leq M^{4}((T-z)$ * $(T-z))^{2}$ for positive number M. Therefore $(T-z)(T-z)^{*}$ $\leq M^{2}(T-z)^{*}(T-z)$, and thus it follows from Lemma 2.2 that T is an M-hyponormal operator on H.

Lemma 3.3 [1, Proposition 2]. If T is a bounded linear operator such that $T^{*} T$ commutes with $T^{*}+T$ then $4 T^{*} T$ $-\left(T^{*}+T\right)^{2} \geq 0$.

Lemma 3.4 [11, Corollary 8]. If T is M-hyponormal, N is normal and $T N=N T$ then $T+N$ is an M-hyponormal operator.

Theorem 3.5. If T is an M-hyponormal operator such that $T^{*} T$ commutes with $T^{*}+T$ and $T C=C T$, where C is any one root of the equation $\left(z-T^{*}\right)(z-T)=0$ for $z \in$
C, then $T+C^{*}$ is an M-hyponormal operator.
Proof. If T is a bounded linear operator such that $T^{*} T$, commutes with $T^{*}+T$, it follows from Lemma 3.3 that $4 T^{*}$ $T-\left(T^{*}+T\right)^{2} \geq 0$. Put $C=\frac{\left(T^{*}+T\right)+i \sqrt{4 T^{*} T-\left(T^{*}+T\right)^{2}}}{2}$ Then it is clear that C is normal, and also C^{*} is normal. From [3] it is obvious that $T C^{*}=C^{*} T$, hence it follows from Lemma 3.4 that $T+C^{*}$ is an M-hyponormal operator.

Corollary 3.6. If T and T* are M-hyponormal operators then $T+T^{*}$ is an M-hyponormal operator.

Proof. Since T and T^{*} are M-hyponormal operators, it follows from Lemma 2.4 that T is normal, and thus $T+T^{*}$ is an M-hyponormal operator.

Lemma 3.7 [12, Theorem 1]. Let T be M-hyponormal and suppose that $T X=X T^{*}$ for $X \in L(H)$. Then $T^{*} X=$ XT.
Lemma 3.8. If A and B are M-hyponormal and $A X=$ $X B^{*}$ for $X \in L(H)$, then $A^{*} X=X B$.

Proof. From Lemma 3.7.
Theorem 3.9. If T and A are M-hyponormal and $T A_{z}$ $=A_{2} A^{*}$ where A_{2} is a bounded linear operator in Lemma 3.1, then $\overline{\operatorname{ranA}}_{2}$ reduces T and $\operatorname{Ker}(T-z)$ reduces A.

Proof. It follows from Lemma 3.8 that $T A_{z} A_{z}{ }^{*}=A_{z} A^{*} A_{z}{ }^{*}$ $=A_{2} A_{2}{ }^{*} T$, and thus T commutes with $A_{2} A_{2}{ }^{*}$. Since $A_{2} A_{2}{ }^{*}$ is self-adjoint, $A_{2} A_{2}{ }^{*}$ is normal, and $\overline{\operatorname{ran}\left(A_{2} A_{z}{ }^{*}\right)}=\overline{\operatorname{ran} A_{2}}$. Therefore $A_{z} A_{z}{ }^{*}$ is the projection on $\overline{\operatorname{ran} A_{z}}$. Since T commutes with $A_{2} A_{z}{ }^{*}, \overline{\operatorname{ran}} A_{z}$ reduces T. Similarly, it is obvious by Lemma 3.8 that $A_{2}{ }^{*} A_{2} A=A_{z} * T^{*} A_{2}=\left(T A_{2}\right) * A_{2}=$ $A A_{2}{ }^{*} A_{2}$, and thus A commutes with $A_{z}^{*} A_{2}$. Also $A_{z}{ }^{*} A_{2}$ is normal and $\operatorname{Ker}\left(A_{z}{ }^{*} A_{z}\right)=\operatorname{Ker} A_{z}$. Thus $A_{z}{ }^{*} A_{z}$ is the projection on Ker A_{z}. Since A commutes with $A_{2}{ }^{*} A_{2}$, Ker A_{z}
reduces A. From Lemma 3.1 R. G. Douglas -2〕 has obtained that there exists a unique bounded operator A_{z} such that Ker $A_{z}=\operatorname{Ker}(T-z)$. Therefore $\operatorname{Ker}(T-z)$ reduces A.
Theorem 3.10. Let A and B be M-hyponormal operators such that $A X=X B^{*}$ for $X \in L(H)$. Then A is a linear conbination of four unitary operators each of which commutes with $X X^{*}$.

Proof. By Lemma 3.8, A commutes with $X X^{*}$ and $X X^{*}$ is normal. Let $A=H+i J$ be the Cartesian decomposition of A, where $H=-\frac{1}{2}\left(X+X^{*}\right)$ and $J=\frac{1}{2 i}\left(X-X^{*}\right)$. Then H and J commute with $X X^{*}$. It can assumed that H and J are contractions, and thus $H \pm i\left(I-H^{2}\right)^{\frac{1}{2}}$ and $i J \pm\left(I-J^{2}\right)^{\frac{1}{2}}$ are unitary, commutes with $X X^{*}$. Since $Z A=\left(\vec{i}+i\left(I-H^{2}\right)^{2}\right)+$ $\left(H-i\left(I-H^{2}\right)^{\frac{1}{2}}\right)+\left(i J+\left(I-J^{2}\right)^{\frac{1}{2}}\right) \div\left(i J-\left(I-J^{2}\right)^{\frac{1}{2}}\right)=2 H+2 i J$, $A=\operatorname{span}\left\{\left(H+i\left(I-H^{2}\right)^{\frac{1}{2}}\right),\left(H-i\left(I-H^{2}\right)^{\frac{1}{2}}\right),\left(i J+\left(I-J^{2}\right)^{\frac{1}{2}}\right)\right.$, $\left.\left(i J-\left(I-J^{2}\right)^{\frac{1}{2}}\right)\right\}$.

We shall consider a class \mathcal{L} of operators T satisfying the inequality $T * T \geq(R e T)^{2}$. By Che-Kao Fong, Vasile I. Istratescu [10] every hyponormal operator is in \mathcal{L}. Now we shall show an example of an $M(=3)$-hyponormal operator T if T is in \mathcal{L}.

Lemma 3. 11 [10, Proposition 2.1-. If T is in \mathcal{L} and z is a real number, then $T-z$ is in \mathcal{L}

Example 3.12. Let $T \in L(H)$ be in \mathcal{L}. Then T is an M ($=3$)-hyponormal operator.

Proof. If z is real number, by Lemma 3.11 it sufficient to consider the case when $z=0$. Then we have $\left(\left\|T^{*} x\right\|-\|\right.$ $T x \|)^{2}=\left\|T^{*} x\right\|^{2}+\|T x\|^{2}-2\left\|T^{*} x\right\|\|x\| \leq\left\|\left(T+T^{*}\right) x\right\|^{2}=$ $\|2 R e T x\|^{2}-4(\operatorname{Re} T)^{2}(x, x) \leq 4\left(T^{*} T x, x\right)=(2\|T x\|)^{2}$, and thus $\left\|T^{*} x\right\|=3\|T x\|$. Therefore it is clear that $\|(T-z)^{*} x$
$\|\leq 3| |(T-z) x\|$ for all $x \in H$ and all real number z, hence T is an $M(=3)$-hyponormal operator.

Corollary 3.13. Let $T \in L(H)$ be in $\mathcal{L} . I f(T-z)^{n} x=0$ for all real number z and some $n \geq 1$. Then $T^{*} x=\bar{z} x$.

Proof. It follows from Example 3. 12 that T is a 3 -hyponormal operator. From Lemma 2.1 (2) it is clear that \|(T$z) x\left\|\left\|^{n+1} \leq 3^{-\frac{x(n+1)}{2}}\right\|(T-z)^{n+1} x\right\|$, and so $\|(T-z) x\|^{n+1}=0$ implies $T x=z x$. Thus, in view of Lemma 2.1(1), $T x=z x$ implies $T^{*} x=\vec{z} x$.

4. An operator of M-power class (N)

We consider the following subset of M -hyponormal operators; T satisfies the addition property that for all z in tha complex plane, all integers n and all $x \in H,\left\|(T-z)^{n} x\right\|^{2} \leq$ $M\left|\mid(T-z)^{2 n} x\| \| x \|\right.$. We call an operator with these properties an operators of M-power class (N). [8]. From a class of operators on H the operator T is said to be of class (N) if $x \in H, \quad\|x\|=1,\|T x\|^{2} \leq\left\|T^{2} x\right\|$. [9].
Lemma 4.1. [6, Lemma 2] Let T be of class (N). Then $\left\|T^{n+1} x\right\|^{2} \geq\left\|T^{n} x\right\|^{2}\left\|T^{2} x\right\|$ for every unit vector $x \in H$ and $n \geq 1$.

Lemma 4.2. If T is of M-power class (N), then the spectral radius $r(T)$ of T is not equal to $\|T\|$. But if T is of class (N), then $\|T\|=r(T)$.

Proor. We can assume without loss of generality that \|T\| $=1$. It follows from [9, Lemma] that there exists a sequence $\left\{x_{n}\right\}$ such that $\left\|x_{n}\right\|=1$ and $\lim \left\|T x_{n}\right\|=1$. Since T is of M-power class (N), it is obvious that $1=\lim _{n \rightarrow \infty}\left\|T x_{n}\right\|^{2} \leq M \lim _{n \rightarrow \infty}$ $\left\|T^{2} x_{n}\right\|$ which yields $\left\|T^{2}\right\| \geq-\frac{l}{M}$. For all integer n we have
$\left\|T^{2 n}\right\| \geq \frac{1}{M 2^{n}-1}$ by induction. Thus $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|\left\|^{1}=\lim _{n \rightarrow \infty}\right\|$ $T^{2 m} \|^{\frac{1}{2 m}},(n=2 m), \geq \lim _{m \rightarrow \infty}\left(\frac{1}{M^{2^{m}-1}}\right)^{\frac{1}{2 m}}=1$. Since $\|T\|=1, \quad \frac{1}{M}$ $\|T\|=\frac{1}{M} \leq 1 \leq r(T)$, that is, $\frac{1}{M}\|T\| \leq r(T)$. If T is of class (N), then the inequality $\|T x\|^{n} \leq\left\|T^{n} x\right\|$ holds for n $=2$. Suppose that for the case $n=k$ the inequality $\|T x\|^{k} \leq$ $\left\|T^{k} x\right\|$ holds. If $n=k+1$, then it follows Lemma 4.1 that $\left\|T^{k+1} x\right\|^{2} \geq\left\|T^{k} x\right\|^{2}\left\|T^{2} x\right\| \geq\|T x\|^{2 k}\|T x\|^{2}=\|T x\|^{2(k+1)}$, and so the inequality $\left\|T^{k+1} x\right\| \geq\|T x\|^{k+1}$ holds. Therefore, we have $r(T)=\lim \left\|T^{4}\right\|^{\frac{1}{2}}=\|T\|$
Example 4.3. [8]. From Example $2.5 T$ is of M-power ciass (N) and $r(T) \neq\|T\|$.
Example 4.4. Let T be a hyponormal operator. Then T is of class (N) and $r(T)=\|T\|$.

Proof. Since $\|T x\|^{2}=(T x, T x)=(T * T x, x) \leq\|T * T x\|$ $\leq\left\|T^{2} x\right\|, T$ is of class (N). It is clear, by Lemma 4.2, that $r(T)=\|T\|$.

Lemma 4.5. [8, Theorem 2.1] If T is of M-power class (N) and $T^{-1} \in L(H)$, then T^{-1} is also of M-power class (N).
Theorem 4.6. If T is of M-power class (N) and $T^{-1} \in$ $L(H)$, then $m_{T}=\left\{x:\left\|T^{-n} x\right\| \leq M\|x\|, n=2,3, \cdots,\left\|T^{-1} x\right\|=\right.$ M) is invariant under T^{-1}

Proof. If T is of M-power class (N), it follows from Lemma 4.5 that T^{-1} is of M-power class (N). Let $x \in m_{T}$ and $\|x\|=1$. Then we have $\left\|T^{-n} x\right\|^{2} \leq M\left\|T^{-2 n} x\right\|$, and thus also $\left\|T^{-n}\left(T^{-1} x\right)\right\|^{2} \leq M\left\|T^{-2(n+1)} x\right\|$. It is clear, from the Definition of m_{T} that $\left\|T^{-2 n-1}\right\| \hat{i}=\sup _{\||| |=1}\left\|T^{-2 n-1} x\right\| \leq M$. Thus we
have $\left.\frac{1}{M}\left\|T^{-(\alpha+1)} x\right\|\right|^{2} \leq\left\|T^{-2\left(n^{n+1}\right)} x\right\| \leq\left\|T^{-2 n^{-1}}\right\|\left\|T^{-1} x\right\| \leq M$
$\left\|T^{-1} x\right\|$. Since $\left\|T^{-1} x\right\|=M \geq 1$, it follows that $\| T^{\sim n}\left(T^{-1} x\right)$ $\left\|\left\|^{2} \leq M^{2}\right\| T^{-1} x\right\| \leq M^{2}\left\|T^{-1} x\right\|^{2}$, hence $\left\|T^{-v}\left(T^{-1} x\right)\right\| \leq M\left\|T^{-1} x\right\|$. Therefore, $T^{-1} x \in m_{T}, m_{T}$ is invariant under T^{-1}.
Remark 4.7. If T is of M-power class (N) and $T^{-1} \in L$ (H), then $\left\|(T-z)^{*-1} x\right\|^{2} \leq M^{3}\left\|(T-z)^{-2} x\right\|$ for all $x \in H$, $\|x\|=1$, and for all z in resolvent set of $T, \rho(T)$.

Proof. It follows from Lemma 4.5 that T^{-1} is of M-power class (N), and so we have $\left\|(T-z)^{-1} x\right\|^{2} \leq M \|(T-z)^{-2} x| |$ for all $z \in \rho(T)$ and for $n=1$. Since T is M-hyponormal, it is clear, by the inequality; $(T-z)(T-z)^{*} \leq M^{2}(T-z)^{*}(T-$ z, that $(T-z)^{-1}(T-z)^{*-1} \leq M^{2}(T-z)^{*-1}(T-z)^{-1}$ holds, hence it follows that $\left\|\left(T^{*}-\bar{z}\right)^{-1} x\right\| \leq M\left\|(T-z)^{-1} x\right\|$ for all $z \in \rho(T)$. Thus, we have $\left\|\left(T^{*}-\bar{z}\right)^{-1} x\right\|^{2} \leq M^{2}\left\|(T-z)^{-1} x\right\|^{2}$ $\leq M^{3}| |(T-z)^{-2} x| |$ for all $z \in \rho(T)$.

References

[1] Stephen L. Campbell and Ralph Gellar, Spectral properties of linear operators for which $T^{*} T$ and $T+T^{*}$ commute, Proc. A. M. S, 60, (1976), 197-202.
[2] R.G. Douglas, On majorization, factorization, and range inclusion of operators on a Hilbert space, Proc. A.M.S, 17, (1966), 413-415.
[3] H. R. Dowson, Spectral theory of linear operators, Academic Press, 1978.
[4] Peter A.Fillmore, Notes on operator theory, Van Nostrand Reinhold Com., 1970.
[5] Masatoshi Fujii and Yasuhiko Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad., 51, (1975), 243-246.
[6] Takayuki Furuta, On the class of paranormal operators, Proc. Japan Acad. , 43, (1967), 594-598.
[7]Gilbert Helmberg, Introduction to spectral theory in Hilbert space, North-Holland Pub. Com., 1967.
[8] Vasile I. Istrătescu, Some results on M-hyponormal operators, Mathematics Semmer Notes, 6,(1978), 77-86.
[9] , On some hyponormal operators, Paci. J. M., 22, (1967), 413-417.
[10] Che-Kao Fong and V.I.Istrătescu, Some characterizations of hermition operators and related classes of operators, 1 , Proc. A. M.S, 71, (1979), 107-112.
[11] Che-kao Fong, On M-hyponormal operators, Studia Mathematica, LXV, (1979), 1-5.
[12] R. L. Moore, D. D. Rogers and T. T. Trent, A note on intertwining M-hyponormal operators, Proc. A. M. S, 83, (1981), 514-516.
[13] Bhushar L. Wadhwa, M-hynonormal_operator, Duke.Math, 41 , (1974), 655-665.

Department of Mathematics
Unversity of Ulsan.
Ulsan 690
Korea

