SOME REMARKS ON THE MULTIPLICATORS FOR H AND THE CONVOLUTION OPERATORS IN H'

YOUNG SIK PARK

0, Introduction

L. Schwartz[7] determined the multiplicators and the convolutors for the tempered distributions. Hasumi[2] determined the multiplicator for \mathfrak{H} and the convolutor for H'. Z. Zieleźny[9] studied convolution operators more precisely and concretely in H'. M. Morimoto[3] determined the convolutors for the space of Fourier ultrahyperfunctions.

In this paper, we considered the dual space $\mathcal{O}_c(\mathcal{J}', \mathcal{J}')$ (resp. $\mathcal{O}_c(\mathbf{H}', \mathbf{H}')$) of $\mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$ (resp. $\mathcal{O}_c'(\mathbf{H}', \mathbf{H}')$). We can write down the relations of various spaces:

 $\mathfrak{O}_{\mathcal{H}}(\mathfrak{H},\mathfrak{H}) \subset \mathfrak{O}_{\mathfrak{c}}(\mathfrak{H}',\mathfrak{H}') \subset \mathfrak{O}_{\mathcal{H}}(\mathfrak{H},\mathfrak{H}) \subset \mathfrak{O}_{\mathfrak{c}}(\mathrm{H}',\mathrm{H}') \subset \mathfrak{O}_{\mathfrak{M}}(\mathrm{H},\mathrm{H}).$

We also examined the topology on $\mathcal{O}_c'(\mathrm{H}',\mathrm{H}')$ by some different way of [9]. We considered the representation of the space $\mathcal{O}_M(\mathfrak{H},\mathfrak{H})$.

We will examine the convolutors for the space of Fourier ultrahyperfunctions in the forthcoming paper.

1. The spaces $H(\mathbb{R}^n)$ and $H'(\mathbb{R}^n)$

we recall some definitions and properties on the spaces $H(R^*)$ and $H'(R^*)$ to clarify our problems in this paper.

 $H(R^*)$ is the space of all C^* -functions $\varphi(x)$ on R^* such that $\exp(k|x|)D^p\varphi(x)$ is bounded on R^* for any nonnegative integer k and multi-index p. A fundamental system of

seminorms in $H(R^n)$ is defined by

 $||\varphi||_{k} = \sup\{\exp(k|x|)|D^{k}\varphi(x)|; 0 \le |p| \le k, x \in \mathbb{R}^{n}\}$ for $k = 0, 1, 2, \cdots$.

The space $\mathcal{Q}(\mathbb{R}^n)$ of \mathbb{C}^∞ -functions with compact support is dense in the space $H(\mathbb{R}^n)$. The space $H(\mathbb{R}^n)$ is Fréchet nuclear and reflexive.

The dual space $H'(R^n)$ of $H(R^n)$ is the subspace of the space $\mathscr{O}'(R^n)$ of distributions on R^n whose elements are distributions with exponential growth ([5]). The topology of $H'(R^n)$ is the strong dual topology; it makes $H'(R^n)$ into a complete, locally convex and Montel space.

For a function $\varphi \in H(\mathbb{R}^n)$, its Fourier transform

$$\widehat{\varphi}(\zeta) = \left[\cdots \right] \exp(-i \langle x, \zeta \rangle) \varphi(x) dx_1 \cdots dx_n$$

is defined for all $\zeta \in C^n$. We denote by $\mathfrak{H}(C^n)$ the space of Fourier transforms of functions from $H(R^n)$. $\mathfrak{H}(C^n)$ consists of all entire functions rapidly decreasing in any tube, with compact base. In other words, an entire function ψ is in $\mathfrak{H}(C^n)$ if and only if, for any polynomial P(z) of z and any compact set K of R^n , $|P(z)\psi(z)|$ is bounded for $z \in T(K) = R^n \times iK$.

A fundamental system of seminorms in $\mathfrak{H}(C^n)$ is defined by

$$p_k(\psi) = \sup_{z \in \pi} \{|z^k \psi(z)|\}$$

for $k=0, 1, 2, \cdots$, where $z^{k}=z_{1}^{k}\cdots z_{n}^{k}$ and $T_{k}=\{z\in C^{n}; z=x + iy, |y_{j}| \leq k \text{ for } j=1, 2, \cdots, n\}.$

The Fourier transformation \mathcal{F} is a topological isomorphism of $H(\mathbb{R}^n)$ onto $\mathfrak{H}(\mathbb{C}^n)$. The inverse Fourier transformation is given by the following formula:

$$\overline{\mathcal{F}}\psi(x) = \frac{1}{(2\pi)^n} \left\{ \cdots_{R^n} \int \exp(i < x, \xi >) \psi(\xi) d\xi_1 \cdots d\xi_n \right\}$$

The space $\mathfrak{F}(\mathbb{C}^n)$ is Fréchet nuclear and therefore reflexive. If we define the Fourier transformation \mathcal{F} on $\mathfrak{F}'(\mathbb{C}^n)$ by the duality, the Fourier image of $\mathfrak{F}'(\mathbb{C}^n)$ coincides with the space $H'(\mathbb{R}^n)$.

A distribution $T \in \mathscr{G}'(R^n)$ is $H'(R^n)$ if and only if T can be represented in the form

$$T = D^{p}[\exp(k|x|)f(x)],$$

where $p \in N^n$, $k \in R$ and f is a bounded, continuous function on R^* . Or equivalently, $T \in H'(R^*)$ if and only if, each regularization $T^*\mathcal{L}$, $\mathcal{L} \in \mathcal{D}(R^n)$, is a continuous function of exponential growth; in that case there is a $k \in N$ such that

 $(\mathbf{T}^*\mathcal{L})(x) = \mathbf{0}(\exp(k|x|))$

as $|x| \rightarrow \infty$, for all $\mathcal{L} \in \mathcal{D}(\mathbb{R}^n)$ (see[9]).

2. $\bigcirc_{\scriptscriptstyle M}(\mathcal{J}, \mathcal{J})$ and $\bigcirc_{\scriptscriptstyle C}(\mathcal{J}', \mathcal{J}')$

Let \mathcal{H}' be a space of distributions in \mathbb{R}^n , which may be the space $\mathcal{D}'(\mathbb{R}^n)$ or one of its subspaces with a topology stronger than that induced in \mathcal{H}' by $\mathcal{D}'(\mathbb{R}^n)$. For instance, \mathcal{H}' is $\mathcal{D}'(\mathbb{R}^n)$ or $H'(\mathbb{R}^n)$ or $\mathcal{J}'(\mathbb{R}^n)$.

Furthermore, let $\mathcal{O}_{c'}(\mathcal{H}', \mathcal{H}')$ be the space of convolution operators in \mathcal{H}' , i.e., the space of continuous linear mappings of \mathcal{H}' into \mathcal{H}' which are convolution operators on $\mathcal{E}' \subset \mathcal{H}'$.

We identify the space $\mathcal{O}_{c}'(\mathcal{H}', \mathcal{H}')$ of convolution operators in \mathcal{H}' with the space of distributions, which consists of all $S \in \mathcal{H}'$ such that the mapping $T \rightarrow S^*T$ of \mathcal{E}' into \mathcal{H}' can be extended to a continuous linear mapping of \mathcal{H}' into \mathcal{H}' . Therefore, $\mathcal{E}' \subset \mathcal{O}_{c}'(\mathcal{H}', \mathcal{H}') \subset \mathcal{H}'$. With the topology in $\mathcal{O}_{c}'(\mathcal{H}', \mathcal{H}')$ induced by the space $L_{\delta}(\mathcal{H}', \mathcal{H}')$, the injection $\mathcal{O}_{c}'(\mathcal{H}', \mathcal{H}') \rightarrow \mathcal{H}'$ is continuous and the bilinear mapping $(S, T) \rightarrow S^*T$ of $\mathcal{O}_{c}'(\mathcal{H}', \mathcal{H}') \times \mathcal{H}'$ into \mathcal{H}' is separately continuous.

For $S_1, S_2 \in \mathcal{O}_c'(\mathcal{H}', \mathcal{H}')$, the convolution $S_1^*S_2$ is also in $\mathcal{O}_c'(\mathcal{H}', \mathcal{H}')$. Moreover, the bilinear mapping $(S_1, S_2) \rightarrow S_1^*S_2$ of $\mathcal{O}_c'(\mathcal{H}', \mathcal{H}') \times \mathcal{O}_c'(\mathcal{H}', \mathcal{H}')$ into $\mathcal{O}_c'(\mathcal{H}', \mathcal{H}')$ is separately continuous.

We now consider the case $\mathcal{H}' = \mathcal{J}'(R^*)$. $\mathcal{E}\mathcal{J}'$ is the set of all C^* -functions $f \in \mathcal{J}'(R^*)$ such that, for any $S \in \mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$, the convolution S^*f is a C^* -function and $S \rightarrow S^*f$ is a continuous mapping of $\mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$ into \mathcal{E} . $\mathcal{A}\mathcal{J}'$ is a subset of $\mathcal{E}\mathcal{J}'$. A function $f \in \mathcal{E}\mathcal{J}'$ is in $\mathcal{A}\mathcal{J}'$, if, for every $S \in \mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$, the convolution $h = S^*f$ can be continued analytically in the complex *n*-space C^* and the growth of the resulting entire function is restricted in the following way. In any horizontal band T_k in C^* around \mathbb{R}^n of width k, $|h(z)| \leq |g(Re\ z)|$, where g is a function of $\mathcal{E}\mathcal{J}'$ depending on k and $Re\ z$ is the real part of z. For each $f \in \mathcal{E}\mathcal{J}'$ and $S \in \mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$, clearly $f^*S \in \mathcal{E}\mathcal{J}'$ i.e., $\mathcal{E}\mathcal{J}'$ is a module over $\mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$ under the convolution operation.

A function f(x) defined on \mathbb{R}^n is slowly increasing, if there is a constant k such that

(2.1)
$$f(x) = 0(|x|^k),$$

as $|x| \rightarrow \infty$; f(x) is rapidly decreasing, if condition (2.1) holds for every negative k.

A distribution $S \in \mathcal{O}'(\mathbb{R}^n)$ is rapidly decreasing, if and only if, for any integer k, $(1+||x||^2)^{k/2}S(x)$ is a bounded distribution, or equivalently for every $k \ge 0$, S is a finite sum of derivatives of continuous functions, whose products with $|x|^k$ are bounded in \mathbb{R}^n . $\mathcal{O}_c'(\mathcal{J}', \mathcal{J}')$ is the space of rapidly decreasing distributions.

One refers the elements of $\mathcal{O}_{c'}(\mathcal{J}', \mathcal{J}')$ as the distributions

rapidly decreasing at infinity.

Fourier transforms of distributions of $\mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$ from the space $\mathcal{O}_{M}(\mathcal{J}, \mathcal{J})$ of C^{∞} -functions, slowly increasing together with all their derivatives. A C -function f is in $\mathcal{O}_{M}(\mathcal{J}, \mathcal{J})$, if and only if, for any multiindex p, there exists a polynomial P such that $|D^{p}f| \leq |P|$ on \mathbb{R}^{n} . The topology of $\mathcal{O}_{M}(\mathcal{J}, \mathcal{J})$ is such that the Fourier transform is a topological isomorphism of $\mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$ onto $\mathcal{O}_{M}(\mathcal{J}, \mathcal{J})$. Moreover, the convolution $S^{*}T$ of $S \in \mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$ and $T \in \mathcal{J}'(\mathbb{R}^{n})$ is transformed into the product \widehat{ST} i.e., $\mathcal{F}(S^{*}T) = (\mathcal{FS})(\mathcal{FT})$. On the other hand, th Fourier transformation \mathcal{F} gives a topological linear isomorphism:

$$\mathcal{O}_{\mathcal{M}}(\mathcal{S},\mathcal{S}) \xrightarrow{\mathcal{F}} \mathcal{O}_{\mathcal{C}}(\mathcal{S}',\mathcal{S}')$$

If $f \in \mathcal{O}_{M}(\mathcal{J}, \mathcal{J})$ and $T \in \mathcal{J}'(\mathbb{R}^{n})$, then $\mathcal{F}f \in \mathcal{O}_{c}'(\mathcal{J}', \mathcal{J}')$ and $\mathcal{F}T \in \mathcal{J}'(\mathbb{R}^{n})$ and we have $\mathcal{F}(fT) = (\mathcal{F}f)^{*}(\mathcal{F}T)$.

The set $\mathcal{E}\mathcal{J}'$ coincides with the space $\mathcal{O}_{\epsilon}(\mathcal{J}', \mathcal{J}')$ of very slowly increasing C^{∞} -functions, which is the dual of $\mathcal{O}_{\epsilon}'(\mathcal{J}', \mathcal{J}')$. (See[8]).

Recall that a C^{∞} -function f is in $\mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$, if and only if its derivatives D'f have the same rate of increase as a power of |x|. In another words, there exists a constant k, such that

$$D^r f(x) = 0(|x|^k)$$

as $|x| \rightarrow \infty$, for all the derivatives.

The set \mathscr{AS}' consists of functions $f \in \mathscr{ES}'$ extendable over C^* as entire functions, slowly increasing in any horizontal band T_i . More precisely, an entire function f is in \mathscr{AS}' , if and only if, in every band T_k .

$$|f(z(| \le M(1+|z|^*)),$$

wher M and μ are constants depending on k

THEOREM 2.1. $\mathcal{E}\mathcal{J}' = \mathcal{O}_{c}(\mathcal{J}', \mathcal{J}') \subset \mathcal{O}_{M}(\mathcal{J}, \mathcal{J}), i.e., the set <math>\mathcal{E}\mathcal{J}'$ coincides with $\mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$ and it is a subspace of $\mathcal{O}_{M}(\mathcal{J}, \mathcal{J}).$

 $f \in \mathcal{O}_{u}(\mathfrak{H}, \mathfrak{H})$ if and only if $f \in \mathcal{O}(\mathbb{C}^{n})$, for any h > 0there exists a multiindex p such that $|f(z)|(1+|z|^{p})^{-1}$ is boundedon T_{k} .

THEOREM 2.2. The set \mathcal{A} b' coincides with $\mathfrak{O}_{M}(\mathfrak{H}, \mathfrak{H})$ and $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H}) \subset \mathcal{O}_{c}(\mathfrak{I}', \mathfrak{I}') \subset \mathcal{O}_{M}(\mathfrak{I}, \mathfrak{I})$. Moreover $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ is a module over $\mathfrak{O}_{c}'(\mathfrak{I}', \mathfrak{I}')$ under convolution.

3. The space $\mathcal{O}_{c}'(H', H')$ of convolution operators in H'

For $S \in H'(\mathbb{R}^n)$ and $T \in \mathcal{E}'$, the convolution S^*T is well defined as a distribution in $H'(\mathbb{R}^n)$ and $T \rightarrow S^*T$ is a continuous linear mapping from \mathcal{E}' into $H'(\mathbb{R}^n)$. We call S a convolution operator in $H'(\mathbb{R}^n)$, if the latter mapping is continuously extendable to a mapping from $H'(\mathbb{R}^n)$ into $H'(\mathbb{R}^n)$.

We denote by $\mathcal{O}_{c}'(H', H')$ the linear space of all convolution operators in $H'(\mathbb{R}^{n})$. One refers the elements of $\mathcal{O}_{c}'(H', H')$ as the distributions very rapidly decreasing at infinity.

PROPOSITION 3.1. [9]. A distribution S is in $\mathcal{O}_{c}'(H', H')$ if and only if it satisfies one of the equivalent conditions:

(a) For every $a \in \mathbb{R}^n$, the product exp < a, x > S(x) is a bounded distribution on \mathbb{R}^n , i.e., $exp < a, x > S(x) \in \mathscr{B}'$.

(b) For every $k \in N$, S can be represented as a finite sum of derivatives of continuous functions F_{p} .

(1) $S = \sum_{|p| \leq m} D^p F_p$,

where

(2) $|F_p(x)| \leq M_p \exp(-k|x|)$; M_p are constants.

(c) For every
$$k \in \mathbb{N}$$
, the set of distributions $exp(k|h|)\tau_{k}S$, $h \in \mathbb{R}^{n}$, is bounded in $\mathcal{D}'(\mathbb{R}^{n})$.

(d) For every $\mathcal{L} \in \mathcal{D}(\mathbb{R}^n)$, the regularization $S^*\mathcal{L}$ is in $H(\mathbb{R}^n)$.

Condition (d) can be replaced by the stronger condition: (d') For every $\varphi \in H(\mathbb{R}^n)$, the convolution $S^*\varphi$ is in $H(\mathbb{R}^n)$ and the mapping $\varphi \rightarrow S^*\varphi$ of $H(\mathbb{R}^n)$ into $H(\mathbb{R}^n)$ is continuous.

PROPOSITION 3.2. $\mathcal{O}_{c}'(H', H') \times H'(\mathbb{R}^{n}) \supseteq (T, U) \rightarrow T^{*}U \subseteq H'(\mathbb{R}^{n})$ is separately continuous.

We denote by $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ the space of all C^{∞} -functions extendable over C^{n} as entire functions slowly increasing in any horizontal band. This means that an entire function \mathcal{L} is in $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ if and only if for each h>0 there exists a $p \in N^{n}$ such that

 $|\mathcal{L}(z)|(1+|z^p|)^{-1}$ is bounded on T_{k} .

 $\mathcal{O}_{\mathcal{H}}(\mathfrak{H}, \mathfrak{H})$ is the space of multiplication operators in $\mathfrak{H}'(\mathbb{C}^n)$. If $\varphi \in \mathfrak{H}(\mathbb{C}^n)$ and $\mathcal{L} \in \mathcal{O}_{\mathcal{M}}(\mathfrak{H}, \mathfrak{H})$, then $\varphi \mathcal{L} \in \mathfrak{H}(\mathbb{C}^n)$ and the mapping $\varphi \rightarrow \varphi \mathcal{L}$ of $\mathfrak{H}(\mathbb{C}^n)$ into $\mathfrak{H}(\mathbb{C}^n)$ is continuous.

The product $\mathcal{L}T$ of $\mathcal{L} \in \mathfrak{S}_{M}(\mathfrak{H}, \mathfrak{H})$ and $T \in \mathfrak{H}'(C^{*})$ is defined by equation

 $(\mathcal{L}T)\cdot\varphi = T\cdot(\mathcal{L}\varphi), \ \varphi \in \mathfrak{g}(C^n).$

PROPOSITION 3.3. The Fourier transformation \mathcal{F} gives an isomorphism:

$${\mathfrak S}_{\scriptscriptstyle M}({\mathfrak H},{\mathfrak H}) {\stackrel{{\mathcal F}}{\longrightarrow}} {\mathfrak S}_{{\mathfrak c}}'(H',H')$$

If $f \in \mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ and $T \in \mathfrak{H}'(\mathbb{C}^{n})$, then $\mathcal{F}f = \hat{f} \in \mathcal{O}_{c}'(H', H')$ and $\mathcal{F}T = \hat{T} \in H'(\mathbb{R}^{n})$ and we have $\mathcal{F}(fT) = f\hat{T} = (\mathcal{F}f)^{*}(\mathcal{F}T) = \hat{f}^{*}\hat{T}$.

We define the space $\mathcal{O}_{M}(\mathcal{J}', \mathcal{J}')$ (resp. $\mathcal{O}_{M}(H', H')$) as the image of Fourier transformation of the space YOUNG SIK PARK

 $\mathcal{O}_{\iota}(\mathcal{J}', \mathcal{J}')$ (resp. $\mathcal{O}_{\iota}(H', H')$).

Summing up the results, we write down the table of various spaces:

 $\begin{array}{c} \mathcal{O}_{\mathsf{M}}(\mathfrak{H},\mathfrak{H}) \subset \mathcal{O}_{\epsilon}(\mathfrak{f}',\mathfrak{f}') \subset \mathcal{O}_{\mathsf{M}}(\mathfrak{f},\mathfrak{f}) \subset \mathcal{O}_{\epsilon}(H',H') \subset \mathcal{O}_{\mathsf{M}}(H,H) \\ \downarrow \ \mathcal{F} \\ \mathcal{O}_{\epsilon}'(H',H') \subset \mathcal{O}_{\mathsf{M}}(\mathfrak{f}',\mathfrak{f}') \subset \mathcal{O}_{\epsilon}'(\mathfrak{f}',\mathfrak{f}') \subset \mathcal{O}_{\mathsf{M}}(H',H') \subset \mathcal{O}_{\epsilon}'(\mathfrak{f}',\mathfrak{f}') \end{array}$

4. The topology on the space $\mathcal{O}_{c}'(H', H')$

Let $L_b(H', H')$ be the space of all continuous linear mappings from $H'(R^*)$ into $H'(R^*)$ endowed with the topology of uniform convergence on all bounded sets. Denote by \mathcal{T} (resp. \mathcal{T}') the topology induced in $\mathcal{O}_c'(H', H')$ by $L_b(H', H')$ (resp. $L_b(H, H)$). Then the topologies \mathcal{T} and \mathcal{T}' in $\mathcal{O}_c'(H', H')$ coincide ([9]).

Let B(resp. B') be a bounded set in $H'(R^n)(\text{resp. }H(R^n))$ and let

$$\begin{split} ||\varphi||_{B} = \sup_{T \in B} |\langle T, \varphi \rangle| \quad (\text{resp. } ||T||_{B'} = \sup_{\varphi \in B'} \langle T, \varphi \rangle|) \\ \text{for } \varphi \in H(R^{*})(\text{resp. } T \in H'(R^{*})). \quad \text{Then} \\ U = U(B', \xi) = \{T \in H'(R^{*}): ||T||_{B'} \langle \xi \} \\ (\text{resp. } U' = U'(B, \xi) = \{\varphi \in H(R^{*}): ||T||_{B} \langle \xi \} \\ \text{is a 0-neighborhood in } H'(R^{*})(\text{resp. } H(R^{*})). \end{split}$$

Let $M(B, U) = \{S \in \mathcal{O}_c'(H', H'): S^*T \in U \text{ for all } T \in B\}$ and let

 $M'(B', U') = \{ S \in \mathcal{O}_{c}'(H', H') : S^* \varphi \in U' \text{ for all } \varphi \in B' \}.$

THEOREM 4.1. For every bounded symmetric set B'(resp. B) and for every O-neighborhood U'(resp. U) in $H(R^*)$ (resp. $H'(R^*)$), there exists a set M(resp. M') in the Oneighborhood base for the topology $\mathcal{T}(resp. \mathcal{T}')$ such that $M^*B' \subset U'(resp. M'^*B \subset U)$.

PROOF. Let $M'(B', U') = \{S \in \mathcal{O}_c'(H', H'): S^* \varphi \in U' \text{ for all } \varphi \in B'\}$, and let A be a bounded symmetric set in $H'(R^*)$.

We may assume that $U' = \{ \varphi \in H(R^n) : ||\varphi||_A < \varepsilon \}, \quad \varepsilon > 0.$ We choose a *O*-neighborhood $U_{B'}^{\varepsilon}$ in $H'(R^n) : U_{B'}^{\varepsilon} = \{ T \in H'(R^n) : ||T||_{B'} < \varepsilon \}.$

Then, the set $M = \{S \in \mathcal{O}_{\epsilon}'(H', H'): S^*T \in U_{B'}^{\epsilon} \text{ for all } T \in A\}$ is a set in the O-neighborhood base for the toplogy \mathcal{T} . Moreover, if $S \in M$, then

 $||S^*T||_{B'} < \varepsilon \text{ for all } T \in A$ i.e., $|\langle S^*T, \varphi \rangle| < \varepsilon \text{ for all } \varphi \in B' \text{ and } T \in A$. Hence, by the symmetry of B' and A,

 $|< T, S^* \varphi > | < \varepsilon$ for all $\varphi \in B'$ and $T \in A$.

Consequently, $S^*\varphi \in U'$ for all $\varphi \in B'$ i.e., $M^*B' \subset U'$.

COROLLARY 4.2. By the above proof, $\mathcal{T}' \subset \mathcal{T}$. By the above latter statement, $\mathcal{T} \subset \mathcal{T}'$. Hence \mathcal{T} coincides with \mathcal{T}' .

REMARK 4.2 We denote by $L_s(H, H)$ the space L(H, H)under the topology of simple convergence. The topology \mathcal{T}' in $\mathcal{O}_c'(H', H')$ coincides with the topology induced in $\mathcal{O}_c'(H', H')$ by the space $L_s(H, H)$.

The topology \mathcal{T}'' in $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ coincides with the topology induced in $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ by the space $L_{s}(\mathfrak{H}, \mathfrak{H})$.

For each $j, k \in \mathbb{N}$, we denote by

$$\tilde{E}_{k,j} = \{ \mathbf{X} \in \mathcal{O}(T_k) : p_{k,j}(\mathbf{X}) = \sup_{\zeta \in T_k} (1 + |\zeta|)^j |\mathbf{X}(\zeta)| < \infty \}$$

(resp. $E_{k,j} = \{ \psi \in \mathcal{O}(T_k) : ||\psi||_{k,j} = \sup_{\zeta \in T_k} (1+|\zeta|)^{-j} |\psi(\zeta)| < \infty \}$).

Then $\tilde{E}_{k,j}(\text{resp. } E_{k,j})$ is a Banach space with the norm $p_{k,j}$ (resp. $||\cdot||_{k,j}$)

For fixed k, the spaces $\tilde{E}_{k,j}(\text{resp. } E_{k,j}), j=1,2,\cdots$, form a decreasing (resp. increasing) sequence:

 $\tilde{E}_{k,1} \supset \tilde{E}_{k,2} \supset \cdots \supset \tilde{E}_{k,j} \supset \cdots \text{ (resp. } E_{k,1} \subset E_{k,2} \subset \cdots \subset E_{k,j} \subset \cdots \text{)}$ and the topology induced in $\tilde{E}_{k,j+1}(\text{resp. } E_{k,j})$ by $\tilde{E}_{k,j}(\text{resp. } E_{k,j})$ $E_{k,j+1}$) is coarser than the topology of $\tilde{E}_{k,j+1}$ (resp. $E_{k,j}$). We denote by

 $\tilde{E}_k = \lim_{i \to \infty} \text{ pioj } \tilde{E}_{k,j}(\text{resp. } E_k = \lim_{i \to \infty} \text{ ind } E_{k,j})$

For $\chi \in \mathcal{O}(T_k)$ (resp. $\psi \in \mathcal{O}(T_k)$), $\chi \in \tilde{E}_k$ (resp. $\psi \in E_k$) if and only if for every (resp. some) $j \in N$, $p_{k,j}(\chi) < \infty$ (resp. $|| \cdot ||_{k,j} < \infty$).

We note that \overline{E}_k is in duality with the space E_k and the canonical bilinear form of the duality is

$$\langle \mathfrak{X}, \psi \rangle \rightarrow \langle \mathfrak{X}, \psi \rangle = \sup_{\zeta \in T_{k}} |\mathfrak{X}(\zeta)\psi(\zeta)|, \ \mathfrak{X} \in \tilde{E}_{k}, \ \psi \in E_{k}.$$

PROPOSITION 4.4. We have the following: as sets, $E = O_M(\mathfrak{H}, \mathfrak{H}) = \bigcap_k E_k = \bigcup_j E_{\infty,j}$, where $E_{\infty,j} = \bigcap_k E_{k,j}$, $\tilde{E} = \bigcap_k \tilde{E}_k = \bigcap_j \tilde{E}_{\infty,j}$, where $\tilde{E}_{\infty,j} = \bigcap_k \tilde{E}_{k,j}$.

PROPOSITION 4.5[9]. $\mathcal{O}_{M}(\mathfrak{H},\mathfrak{H}) = \lim_{k \to \infty} proj E_{k}$

Since $\mathcal{O}_{c'}(H', H')$ is aclosed subspace of the complete nuclear space $L_{b}(H, H)$, $\mathcal{O}_{c'}(H', H')$ is a complete nuclear space. Since $\mathcal{O}_{c'}(H', H')$ is isomorphic to $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ by the Fourier transformation, and since $\mathcal{O}_{M}(\mathfrak{H}, \mathfrak{H})$ is bornologic, $\mathcal{O}_{c'}(H', H')$ is a bornologic, Montel space (see[9]).

5. $\mathcal{O}_{c}(H', H')$ and $\mathcal{O}_{M}(H, H)$

 $\mathcal{O}_{c'}(\mathcal{J}', \mathcal{J}') = \{T \in \mathcal{D}'(R^{*}); \text{ for every integer } k, \\ (1+||x||^2)^{k/2}T(x) \text{ is a bounded distribution} \}$ is the space of convolution operators in $\mathcal{J}'(R^{*})$.

One refers the elements of the space $\mathcal{O}_{c}'(\mathcal{J}', \mathcal{J}')$ as distribution rapidly decreasing at infinity.

 $\mathcal{O}_{c}'(H', H')$ is a linear subspace of the space $\mathcal{O}_{c}'(\mathfrak{Z}', \mathfrak{Z}')$ and the imbedding $\mathcal{O}_{c}'(H', H') \rightarrow \mathcal{O}_{c}'(\mathfrak{Z}', \mathfrak{Z}')$ is continuous. A C^{\sim} -function f is in the dual $\mathcal{O}_{c}(\mathcal{J}', \mathcal{J}')$ of $\mathcal{O}_{c}'(\mathcal{J}', \mathcal{J}')$ if and only if there exists a constant μ such that

$$D^r f(x) = O(|x|^r)$$

as $|x| \rightarrow \infty$, for all the derivatives.

PROPOSITION 5.1.[9]

 $\mathcal{O}_{\epsilon}(H',H') = \{ f \in C^{\infty}(\mathbb{R}^n) \colon D^{p}f(x) = O(exp(k|x|)) \text{ as } \}$

 $|x| \rightarrow \infty$ for all $p \in \mathbb{N}^n$ and some $k \in \mathbb{N}(\text{independent of } p)$ is the dual space of $\mathcal{O}_{\epsilon}'(H', H')$.

THEOREM 5.2. The space $\mathfrak{S}_{\mathfrak{M}}(H, H)$ of multiplicators for H is given as follows:

 $\mathcal{O}_{M}(H,H) = \{ f \in C^{\infty}(\mathbb{R}^{n}) : \text{for every } p \in \mathbb{N}^{n}, \text{ there exists}$ integer k, $C \ge 0$ such that $|D^{p}f(x)| \le Cexp(k|x|), x \in \mathbb{R}^{n} \}$

The space $\mathcal{O}_{c}(H', H')$ is a (linear) subspace of $\mathcal{O}_{M}(H, H)$.

PROPOSITION 5.3. [9]. The space $\mathcal{O}_{\epsilon}(H', H')$ endowed with the strong topology is a complete nuclear Montel space.

References

- José Barros-Neto: An Introduction to the Theory of Distributions Marcel Dekker, Inc. New York 1973.
- [2] Hasumi, M.: Note on the n-dimensional tempered ultra-distributions Tôhoku Math. J., 13 (1961), 94-104.
- [3] Morimoto, M.: Convolutors for Ultrahyperfunctions, Lecture Notes in Physics No. 39 Springer.
- [4] —, Theory of tempered ultrahyperfunctions, I. Proc. Japan Acad. Vol. 51, No.2 (1975).
- [5] Park, Y.S. and M. Morimoto: Fourier ultra-hyperfunctions in the Euclidean n-space, J. Fac. Sci. Univ. Tokyo Sec. IA, 20 (1973), 121-127.
- [6] Park, Y.S.: Fourier Ultra-Hyperfunctions Valued in a Fréchet Space Tokyo J. of Math. Vol. 5, No. 1, June 1982, 143-155.
- [7] Schwartz, L.: Théorie des Distributions, Hermann, Paris, 1967.

YOUNG SIK PARK

- [8] Zieleźny, z.: Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions(I), Studia Math. 28 (1967) p. 317-332.
- [9] —,: On the space of convolution operators in X₁, Studia Math. 31 (1968), p.111-124.

Department of Mathematics Pusan National University Pusan 607 Korea