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ASYMPTOTIC BEHAVIOUR OF NONLINEAR 
SEMIGROUPS IN BANACH SPACES

Gu Dae Lee and Jong Yeoul Park

1. Introduction.

Throughout this paper E denotes a 호eal Banach space, Ad 
ExE an accretive operator that satisfies the 호ange condition, 
Jr the resolvent of A, and S the ao효]!inear semigroup genera
ted by — The main purpose _of the pr^senl paperds to show 
that th은 weak and smmg convergence of Jtx； t and SQt^x/t 
as /too and the properties of the range of A, We also derive 
the weak and strong convergence of (z—匕z)/N and Qx — 
SQtyx)/t as z—. In this direction were established by 
Crandall〔1, p. 166j and Pazy〔5] in Hilbert space. For recent 
development in Banach space see the papers by Kohlberg and 
Neyman〔3츠4〕

2. Preliminaries

Let £ be a real Banach Space, and let I denote the identity 
operator. Then an operator AuExE with domain DQA') and 
range _R(*) is said to be an acccretive if \xr — —
+ 尸(3七一)2)l for all y ^Ax , z = l,2, and r>0. If A is an 
accretive, we can define, for each positive r, the resolvent

J"： RQ1 + rA')—>DQA') by J^=(Z+rA)-1 and the Yosida 
approximation Ar: RQI+ rA)-^RQA') by Ar = (Z—Jr)/r.

We know that Ayx^AJrx for every ”uR(Z+d) and
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\A7x\^\\Ax\\ for every x^DQA')f)RQI+ rA), where \\Ax\\ 
=i成{田:》伝4时，

We denote the closure of a subset D of E by clQD} and its 
closed convex hull by CoD. We 아lall say that A satisfies the 
range condition if _R(1 + rA)Z)cl(DQA^) for all r>0. In this 
case, —A generates a nonexpansive nonlinear semi흥Toaps 
5：E0, oo)xc/(Z)(A))-*cZ(Z)(A)) by S(M)”=lim (Z+ Q/h)A)~nx.

以18

We also prove that 나mt A-10 = F(J7) for each r> 0, where 
FQJyj is the set of fixed points of

Let S be a set and let m(S) be the Banach space of all 
bounded real valued functions on S with the supremum norm, 
An element 以 U四(S)* (the dual space of 及(S)) is called a 
mean on S if —1. Let be a mean-on S a꾜典 -

m(S). Then we denote by 卩(f) the value of m at the function 
f- According to the time and circumstance, we write by 
卩气 f 0) the value of 试£)、We knovz that is a
mean on S if and only if

inf{/G)：5eS)^M(/)^sup{/(s)：suS}

f。호 every f Um(S). Let S be an abstract 도巳mi麥oup. Then, 
for each sUS and jfEm(S), we can define elements fs and fs 
in mQS) given by fsCO=fQsi) and fsQ)=f^s) for all ZwS 
A mean on 5 is called left (right) invariant if 卩侦f])=2(、f) 
(“(户)=W(，f)) for all and sUS. An invariant mean
is a left and right invariant mean. A semigroup which has a 
left(right) invariant mean is called leftGi않it) amenable. A 
semigroup which has an invariant mean is called amenable.

The following results are consequence of〔9〕

Lemma 2.1. Let E be a reflexive Banach space and let 
S be a set. Suppose that [x^s^S} is a bounded subset of 
element of E. Then, for a mean on S, we can obtain an 
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element xQ in E such that
但6, z*) = (血，z*)

for all
Lemma 2. 2. Let E be a real reflexive Banach space, let 

S be a right amenable semigroup and let be a right inv
ariant mean on S. Suppose that {"乾：*wS} is a bounded 
subset of dements of E. Then^ the mean point xQ^E of xt 
concerning 卩，is contained in C\ co(xts:t^S}.

s^S

Recall that the norm of E is said to be Gateaux differen
tiable (and E is said to be smooth) if lim 이@十矽|一|거)" L，8

exists for each x and y in〔I = [zWE : b이 =1}. It is said to 
be uniformly Gateaux differentiable if for each y in U, this 
liinit is approached uniformly as x varies over U. The norm is 
said to be Frechet differentiable if for each x m U this 
limit is attained uniformly fem y in U.

3. Asymptotic behavior

We iww study the mean points of Jtx/t and S(J)이t con
cerning an invariant mean on (0, oo). Let £ be a Banach 오pace 
and let AuE乂 E be an accretive operator that satisfies the 
range condition. Then we know that for each :rWcZ(Z)G4)), 
\Atx\ is monotone nonincreasing in t and further by〔6〕

lim L%이 = limi Ja/히 =d(0, R(2)如
i —' oo fi — 8

Where d(0, R(A)) = i話{|：硏:^eR(A)}
We shall need the following two known lemmas (cf.〔2〕and 

⑻).
Lemma 3. L E* has a Frechet differentiable norm if and 

only if E is reflexive and strictly convex, and has the follo
wing property : if the weak lim — x 티nd k시 ~시；이, then 

，L°。
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{Xn} converges strongly to x.
Lemma 3.2・ E* has a Frechet differentiable norm if and 

only if for any convex set KuE, every sequence {xn} in 
K such that \xn\ tends to K) converges.

Theorem 3.3. Let E be a Banach space, AuExE an 
accretive operator that satisfies the range condition^ Af the 
Yosida approximation of A, x a point in cZ(」D(A)), 
and the natural image of Atx in £**. If RQA)\ 
then d=d(Q, co{p产*}) for every x^clQD(A)) and there 
exists an element 工** with 眞*씨 =以 such that 히:辺**}

for every x^clQD (A))
흐ROOF. Let zUcZ(Z)G4)). Then, since ]&서 is monotone 

nonincreasingin t and \Afy\^\Ay\ for all yGDQA) and 方>0, 
we have that {AtJ：} is bounded. Since 辺** is the nstural 
image of Atx^ by Lemma 2. 1 and 2.2 there exists 
co{辺거*} such that ㈤(辺**, ・万*) = (・切**, ・%*) for every 
where m is an invariant mean on (0, oo). Fo호 石UJGq**), 
where J is the duality mapping of E. We have

I”。*치효=6忸 氾=奴勿**, 시瓦*씨L치
=이■치 치.

Hence, |血*치冬d.
。교 바ie other hand, we know that (以궈서% 元)目阿*씨 for all jt 
UJ(辺**) and t9 sU(0, 8)with t>s>0 (see〔7〕). Let sUS 
and let a subnet {力J of {方} converges to jUE**・ Then we 
obtain

(q**,亍)目』2 for every suS. (3.1)
Hence we have (勾)**,，)兰/. Since |;/c| = lim |功*씨

一厂 L8

=d、we have 기頌产씨 切兰(工。개셔% and hence ]初*씨

=|顶|=又 From (3.1), we also obtain(2；**, j、)、M3 for 
every 어”**} and hence
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찌』=|z*치 |了| 纟(於*,

So, we have |z*치 Md and hence 日=涉(0, 弟{叫**}).

Let y^clQD (A)) and 3** be a mean point of 也产* concer
ning 叭 where natural mapping of Then for
jW人&**—:y**), we have

I --3尸1셰 2  (^匸** -二y** 顶)

=化(功**一叫**, 7) 
^l^t\Atx-Aty\ \i\ 
冬/如(으B一削) \j\ 

=0
and hence 户*. This observation the following corollary. 

Corollary 3.4. Let E be a Banach space. AuExE an 
accretive operator that satisfies the range condition. J. its 
resolvent, x a point in c/(Z)(A)) and 仏와* the natural 
image of Jtx in E**. If is smooth, a?id ®=Q(Q, R(A) 
Then th weak-st a?- lim 從产* exists and is independent of 

L。。

二姮"(D (A)).
PROOF. Since 玲 i온 smooth, hence J阡 is single valued. So 

that 跪产*=痍'(2(卫)is single.
Theorem 3-5. Let E be a Banach space„ AuExE an 

accretive operator that satisfies the range condition^ Jr the 
resolvent of A, and d—d(G)

(a) If E is reflexive and strictly convex, then the weak 
lim Jtx/t exists for each x in cZ(D(A)) [ami，its norm 

equals d〉

(b) If is Frechet differentiable norm, then the strong 
lim Jtx/t exists,

Proof. Part (a)follows from Lemma 3.1.
Part (b) follow워 from Lemma 3.2 and part (a) because 
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lim| J匕이/: = H.

Theorem 3.6. Let E be a Banach space, AuExE an 
accretive operator that satisfies the range condition^ S the 
semigroup generated by —A, x a point in rZ(Z)(A)) and 
W/** the natural image of (z —S0)z)/# in E**. If d= 
d(0, RQA))9 then d=d(Q 3{初产身)to every x^clQD (A)) 
and there exists an element z** si玖|&*치=£ such that 
旋;**U况{也户*})龙質 every x^clQDQA)').

Proof. Let x^cl(D(A)). Then since lim |(z —S0)z)/이

=d by〔7〕and further lim |(y — SQt^y')/t\\\Ay\| for all y 
t~o+

u£)(」4), we have that {(z—S0)y)//} is bounded. Also, by 
Lemma 2.1 and Lemma 2.2, there exists 弟{初产*} such
that □:*) = (□:(「*, e*) for every where 卩，

is an invariant mean on (0, oo). For 爲(爲새), where J is 
the duality mapping of E, we have

如产F = (zo**, 力)=国3产가% 和)京시叫*치|扁| 

=이爲1=이“0*치

Hence, |z(产씨 Wc” On the other hand, we know fromt7j that 
for each x^clQD (A)), there is a functional jWE* such that 
(叫솨서% 疣 So we have (⑦器*, f)^d2 and hence 卜%*치

匡d. Therefore |血*치= 日. Since (也产*, j) 그』for every 
we also have |z*씨for every 况{切产*}. The가 we
obtain d=日(0,况{切产*}). Since S0) is nonexpansive, we 
have {後/*} for every xELclQD QA')') as in proof of
Theorem 3. 3. Thus we obtain the following Co호ollary.

Corollary 3. 7. Let E be a Banach space, AuExE an 
accretive operator that satisfies the range condition^ S the 
semigroup generated by -A. x a point in cKDQA)') and 
叫** the natural image of S(fyx/t in If 归* is 
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smooth, and d=日(0, R(4)). Then the weak-star Um s** 

exists and is indenpendent of x^clQDQA)').
Theorem 3.8. Let E be a Banach space, AuExE an 

accretive operator that satisfies the range condition^ S the 
semigroup generated by —A, and d=dQO, 7?(A)).

(a) If E is reflexive and strictly convex^ then the weak
Um exists for each zWcZ(£)(4)) (qnd its norm
f—>8

equals d)
(b) If E* is Frechet differentiable norm〉then the strong 

lim S(T)x/t exists.
，8
Proof. Part (a) follows form Lemma 3.1.

Part (b) follows from Lemma 3.2 and Part(a)
bermtse Imx \S(f)x/t\=d.

t"
Theorem 3. 9. Let C be a closed subset of a Banach space 

E cind T : C—>C a nonexpansive mapping. Assume that A 
=1 一 T satisfies the range condition x belong to C, and 
%** the natural image of Qx—Tnx)/n in If 日=日(0, 
_R((A一))，then d=d(Q, 3{z妇**}) to every x^C and there 
exists an element with = J such ikat 五서서'U

况{"产*} for every x^C,
Proof. Let aWC. Then by〔6〕, we know lim \Qx — Tnx)/ 

끼 =E. So for a mean m, there exists 我:o**Uco{z%产*} such 
that 何(0」서，产) = (【%**, ⑦*) for every For this
point a:。**, we have |口而*치壬日. Further from〔7〕vze know 
that for each. "WC there is a functional jwE声 with |j| =d 
such that 서%for all So we have (z。**, 7)
^d2 and hence k瓦*치丑日. Therefore |知*치 =d. Since (z箫%

；)^J2 for every 끄Ml, we also prove 치丘4 for every ?**
U况{佑产*}. Then we obtain 日=d(0, Since T
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is nonexpansive We have 宓{z妇아1*}) for every aWC as
in the proof of Theorem 3. 3.

Corollary 3.10. Let C be a closed subset of a Banach space 
E and T : C—>C a nonexpansive mapping. Assume that Z— 
T satisfies the range condition. Let x belong to C9 and let 
z京서' be the natural image of Tnx/n in £**・ If is 
smooth^ then the weak-star lim 佑产* exists.

，L。。

Theorem 3. 고L Let C be a closed subset of a Banach space 
space E and T : C—C a nonexpansive mapping. Assume 
that A—I— T satisfies the range condition and let dud(飢

(a) If E is reflexive and strictly convex^ then the weak 
lim Tvx/n exist for each x in C Qand its norm equals d)。

(b) If E소 has a Frechet differentiable norm, then the 
strong lim T,xx/n exists.

鈴f。

Proof. By Lemma 3.1 and 3. 2.
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