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ABSTRACT

The problem of selecting the gamma population with the largest mean out of £ gamma populations,
each of which has the same shape parameter is considered. An elimination type two-stage procedure is
proposed which guarantees the same probability requirement using the indifference-zone approach as does
the single-stage procedure of Gibbons, Olkin and Sobel (1977). The two-stage procedure has the highly
desirable property that the expected total number of observations required by the procedure is always
less than that of the corresponding singie-stage procedure regardless of the configuration of the popula-
tion parameters.

1. Introduction

The gainma model is considered frequently in the area of reliability and lite testing. This may be
partly due to its relationship to the Poisson process, since the waiting time to the p-th occurrence of a
Poisson process follows a gamma distribution. More importantiy. however, it is a generalization of the
exponential distribution, and it provides a rather flexible skewed density defined over the pusitive range.
Its hazard function may be increasing or decreasing. but it approaches a constant as time approaches
infinity.

Suppose that (g, ») denotes a gamma population with density

(1.1 f(X;ﬁ,r)ZTV(—:W—xr_le"”, x>0:r, 6020,

The mean is £(X) =yg. The parameters r and ¢ are referred to as shape and scale parameter. respec-
tively.

Wilk, Gnanadesikan and Huyette (1962) fit a gamma distribution to failure time observed for
transisters in a accelerated life test. Note that in this experiment ¢ is proportional Lo the tire to failure
(when r is considered as fixed). Thus a large value of @ would indicate a large time to failure or a
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long expected lifetime.

In this paper, we consider the problem of identifying the gamma population with the largest value
of & out of 2 gamma populations, each of which has the same known value or # but has possibly diffe-
rent values of #. Note that because 7 is the same for each population, choosing the population with
the largest @ value is equivalent to selecting the population with the largest mean, which would be
regarded as the best population.

Gupta (1963) investigated the problem of choosing the best of several gamma populations under
the framework of subset selection approach, and tabulated the design constants of his procedure. The
problem of selecting the best under the framework of indifference-zone approach can be solved using
the table of Gupta (1963) which is given in the book by Gibbons, Olkin and Sobel (1977).

In the difference-zone approach, the single-stage procedure of Gibbons, Olkin and Sobel (1977)
does not utilize the information from the data as they are observed. The single-stage procedure would
require, in general, a large amount of sample size relative to the procedures which could react to the
data.

In Section 2, we propose a two-stage procedure which has the property that it screens out non-
contending populations in the preliminary stage, and concentrates sampling only on contending popula-
tions in the second stage. And we introduce the unrestricted minimax criterion as the design criterion
of the proposed procedure.

In Section 3, a lower bound of the probability of correct selection and a general expression of the
expected total sample size of the proposed procedure are derived. And in Section 4, an optimization
problem is solved to determine the design constants to implement the proposed procedure.

2. An Elimination Type Two-Stage Procedure

Let W;(#;, r), 1 <7 <k denote k£ gamma populations with unknown scale parameter §; and a
common known shape parameter ». Let 6, < --- <8, denote the ordered values of 6,,---, 6, where
the correct pairing between g, and 6 ;, are unknown.

The goal of the experimenter is to select the population associated with &, ,,, which is the best.
Following the indifference-zone approach of Bechhofer (1954), the experimenter, prior to the experi-
ment, specifies two constants 6%*( >() and P*(1/k<P*<{)which are incorporated into a probability
requirement.

(2.1)  Po{CS}Z=P*, forall #=(0,, ,0:) cQ(s*)

where CS denotes the event of correct selectionand  Q(8*)={ 8|84,/ 8cv_1a 20%), whichis called
the preference-zone.

The following elimination type two-stage selection procedure R, is proposed as a generalization
of the single-stage procedure R; of Gibbons, Olkin and Sobel (1977).

Stage 1, Take z independent observations X, -+, Xinfrom W,(1<i<k), compute T,V = Z Xis
and determine a subset Jof {1,2,---, £}, where =

22y I={ile:*Vz max ;YY) ¢>1,

ixigk

(a) If 7has only one element, stop sampling and assert that the population associated with max TV
1sisk
is the best. i
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(b) If I has more than one element, go to the second stage.

Stage 2; Take m additional independent observations X;,.q,**, Xinm fromeach W, for ;&J, com-
n m n+m
pute T,=T;V4+T; =2, xi;+ Y, xi; = 2, xi; and assert that the population associated with
J=1 J=nii j=1
rr'l:f T; isthe best.
Note that the statistics 73"’ and 7} have the gamma distributions with scale parameter #; and

the shape parameter nyand (#+ m)r, respectively.

Remark. If ¢=0 (or +o0) the two-stage procedure R, reduces to the single-stage procedure R, with
sample size n(or n+m) per population.

In the above definition of the two-stage procedure R,, the sample size », m and the constant ¢
will be chosen so ti..c the procedure guarantees the basic probability requirement (2.1). To make the
choices unique as well as to have the total sample size (TSS) small, we adopt the following unrestricted
minimax criterion:
minimize
(2.3) sup E,(TSS|R,)

€ Q

subject to

249 inf . F,(CR|R;}2P*
6e Q0 )

3. A Lower Bound of P{CS|R,} and Expected Total Sample Size

A central problem concerned with the construction of procedures using the indifference-zone
approach is to find the infimum of the probability of correct selection over the preference-zone Q( ™ ).
Any parameter configuration at which such an infimum is attained is called a least favorable configuration
(LFC) of the parameters for the procedure under study. For the procedure R,,a LFCis ¢
=0;4_,;=0;,,— 08" = 8%(4) which is intuitively obvious.

f1y =0

Theorem 3.1. For the procedure R, , the following inequality holds.

Gy it pesiryz M B, (HY(crs, T 8%(6)))

= >0

where H( -, « | 8) is the joint c.d.f. of T;'¥ and T; with scale parameter 6

Proof. Without loss of generality, we may assume that 6, <4,<.-..
Then for all 6 < Q(5%)

Po{CSIR,} = Pe{cT}V 2 max T3V, Tp= ma;( T:)
- - i€

1<jisk
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2Py{cTi’ 2TV, Th2T; forall j=1,-, k=1}

_jn Hcx,y6)dH(x, 9|6
Zj n H(ex,y|8%(8))dH(x,y|8)

=E,(H" ™ {eI¥ ", Te|6%()}]
The last inequality comes from the fact that the joint cdf H(x, y|8;) of (TP, T;)is non-increasing
in ¢; andthat 6,<8(8) for j=1,-, k—1 whenever § e0(8%).
The lower bound in (3.1) would be d1ff1cult to compute in practice due to the dependence between

7" and T, Thus it seems reasonable to find a lower bound which is slightly less sharp but more
easily computable. Such a lower bound can be provided by the following result.

Lemma 3.2.

Eo(H* (T, Th|6%(0O))

> E L F* T |85} ) Es (G Tk | 8% ()]

where F(- | ) and G (- | g)are the marginal cdf’s of T;'Y and T}, respectively.

Proof.
H{Crk(“ Tkla (6)} _P{T(l) k(“; l)+ T(Z)STk}

=E [Po{TiV STV, TIV S T-T5% | T§))
>Eo(Po{ TV S TV | T ) Po{TiV ST —T5" [T5(2)))
= PUTIV S iV} PUTIV + TV ST
=F(cT¥")G(TY)

Corollary 3.3.

inf Py {CS |R,}
gema*w

(3.2)
= fcs Fnk:l (c5*x)dFm(x) I F(kn:»m)r(a*y)dF(n-i-m) P
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where Fy, () denotes the cdf of the gamma distribution with the shape parameter v and scale para-
meter unity.

There are an infinite number of combinations of (n,m,c) which for given £ and (8*,P *) will guaran-
tee the basic probability requirement (2.1). Hence we adopt the unrestricted minimax criterion (2.3)
and (2.4). To solve (2.3) and (2.4) we find an analytical expression for £,( TSS|R,).

Let T denote the cardinality of the set 7 in stage 1 and let

if T =1

2 2.

~il

if

=il

Then the total sample size (TSS) required by R,(»,m, ¢) is
TSS = kn+Sn,
A general expression for E,(T'SS|R,) is summarized in the following theorem.

Theorem 3.4. Forany d = wehave

E_Q(TSS |Ry)
(3.3)
k
=kntm D {f N Fex|6)dF(x|6)~ I 11 F(x/cl6,)dF(x16,))
i=1 FL 1 J#i
Proof.

Es(S|R) =E (I |IR,)~Pe{I =1IR,)

M=

=2, [(Pso{cTiV 2 max TiV}=Po{T{P = max (cTEV})
<ji< - i

I
-

L]
X Umw F(cxlaj)dF(xlﬁ,-)—f_g_F(x/clf),-)dF(xle,-)J.

i=1 £
Along the lines of Gupta (1965) it can be shown that the supremum of E,(TSS|R,) is attained
when 6,=6,=---=#6,. Thus we have the following result.
Collary 3.5.

Sup  E,(TSS|R,)
Y=yl

(3.4)

= kn+ km{ 3 Fa7' (cx)dFr(x) = JSF37 (x/ ¢ )dF e (X))
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Instead of solving the optimization problem given by (2.3) and (2.4), we are to solve the optimization
problem of minimizing (3.4) with the constraints (3.2), which are conservative since (3.2) is a lower

bound of PE{CSU{’2 }.

inf
eeaic”)

4., Optimization Problems Yielding Conservative Solutions and the Performance of R, Relativeto R, .

The problem (3.2) and (3.4) are extremely complicated integer programing problems with nonlinear
constraints and objective function.
continuous variables, and have used SUMT algorithm of Fiacco and McCormick (1968). We shall deriote

In solving the optimization problem, we have treated » and  as

by (#,71,¢) a solution to this continuous version of the optimization problem. This optimization problem
has been solved numerically for £ = 2(1) 10, P*=090,095and §*=1.75,2.0, 3.0. The results are
given in Table 4.1.

In order to get the insight into the savings in total sample size by the two-stage procedure R,, we
consider the ratios, which are termed relative efficiency (RE) as defined by

sup £,(TSS|R,)

RE= o

x 100(%)

where n,is the sample size needed by the single-stage procedure R, to satisfy the same probability re-
quirement (2.1).
The values of RE as well as the supremum of the expected total sample size are given in Table 4.2.
It can be observed from Table 4.2 that the RE is decreasing in £ although this has not been establish-
ed analytically. Thus the effectiveness of R, appears to be increasing in £, which is in accordance with
one’s intuition that the screening process would be helpful when £ is large.

Table 4.1. Design constants (ii, m, ¢) of the procedure R,

(a} p*=090
s*=176 &*=20 a*=30
k fr mr ¢ fr mr ¢ hr mr é
2 5.97 5.10 3.32 3.30 3.91 4.83 2.16 1.35 3.60
3 7.82 8.60 2.53 6.04 4.69 293 2.79 2.06 3.06
4 9.44 10.84 1.99 6.61 6.67 2.27 2.79 2.06 2.61
5 11.51 12.03 1.87 7.62 7.92 1.86 3.25 2.70 2.62
6 13.20 13.15 1.61 7.73 9.58 1.80 3.71 3.80 2.44
7 13.90 14.69 1.47 8.99 9.87 1.61 3.76 4.05 2.08
8 14.66 15.66 1.43 9.03 11.32 1.58 4.00 4.21 1.98
9 14.78 17.62 1.42 9.20 12.29 1.57 4.26 457 1.83
10 15.89 17.79 1.38 9.50 12.90 1.54 4.40 4 .82 1.76
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{b) P*=0.95

5*=1.76 §*=20 &*=3.0
k nr mr é nr mr ¢ nr mr é
2 9.05 9.65 2.0 6.43 5.73 2.62 3.12 2.10 3.48
3 12.56 12.66 1.71 8.88 7.64 1.89 3.90 3.23 2.37
4 15.12 14.84 1.62 10.14 9.48 1.67 4,38 3.91 2.11
3] 16.37 16.54 1.48 11.71 10.21 1.52 4.88 4.63 1.81
6 17.69 17.96 1.42 12.41 11.29 1.47 496 4.59 1.99
7 18.71 19.26 1.39 12.79 12.49 1.45 5.42 4.74 1.82
8 19.54 20.30 1.37 13.10 13.56 1.43 5.b1 5.18 1.79
9 20.29 21.38 1.35 13.37 14.49 1.42 5.59 5.47 1.79
10 21.04 22.48 1.32 13.54 15.46 1.41 5.96 5.70 1.66
Table 4.2, Relative efficiency (RE) of the procedure R,
{a) p*=0.90
*=175 §*=2.0 s*=3.0
k E(TSS|R,) RE(%) E(TSS| R,)  RE(%) E(TSS[R,)  RE(%)
2 21.6 98.2 14.4 98.0 6.4 80.0
3 47.5 989 31.3 94.8 13.3 88.6
4 74.3 97.8 48.9 94.0 20,5 85.4
5 101.3 921 66.7 93.2 28.1 90.6
6 128.7 93.3 84.9 94.3 35.0 83.3
7 156.3 89.3 102.7 91.7 472.6 86.9
8 184.0 85.2 120.9 88.9 50.1 89.4
9 211.7 84.0 139.2 85.9 57.6 91.2
10 240.0 82.8 157.5 87.5 65.0 81.2
(b} P*=0.95
&* =175 §*=20 §*=30
k E{TSS i R.) RE(%) E(TSS |Rz) RE(%) E{TSS |Rz) RE {%)
2 34.8 96.7 23.0 95.8 98 982
3 69.1 95.9 455 94.8 19.2 91.4
4 103.5 924 68.2 947 28.5 890
5 138.2 89.2 90.8 90.8 38.0 949
6 172.9 87.3 113.6 90.2 47.3 87.5
7 207.8 84.8 136.6 88.7 56.6 898
8 2429 843 169.7 86.8 66.1 82.6
9 2781 835 182.8 84.6 75.7 84.1
10 313.5 825 206.2 869 85.2 85.2
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