Kyungpook Math. J.
Volume 25, Number 2
December, 1985

## A GENERALIZATION OF BOOLEAN RINGS

By Hisao Tominaga and Adil Yaqub

Throughout the present note, $R$ will represent an alternative ring (all of whose subrings generated by two elements are associative) with identity $1, C$ the set of elements $c$ in $R$ such that $c x=x c$ for all $x \in R$, and $N$ the set of nilpotent elements in $R$.

Recently, A Melter [3, p. 220] considered the following condition which arose, presummably, in connection with logic:
(*) $(1-x+x y)(1-y+y x)=1$ if and only if $x=y(x, y \in R)$,
and raised the following question: For which associative rings with identity does the condition (*) hold? T.M.K. Davison [1] gave the following characterization of associative rings satisfying ( ${ }^{*}$ ): An associative ring $R$ with 1 satisfies (*) if and only if (i) $x^{5}=x^{3}$ for all $x \in R$, (ii) $4 x^{2}=4 x$ for all $x \in R$, and (iii) for any idempotent $e \in R$ and any non-zero $x \in R, x \neq[x, e]$ ( $=x e-$ $e x)$. The present authors and Y. Hirano [2] proved recently that if an associative ring $R$ with 1 satisfies (*) then $R$ is commutative and $R / N$ is a Boolean ring. Incidentally, that (*) implies commutativity is not apparent from Davison's characterization.

The purpose of this note is to give the following theorem with an elementary proof (cf. also the main theorem of [4]):

THEOREM. Let $R$ be an alternative ring with identity 1 , and $N$ the set of nilpotent elements in $R$. Then $R$ satisfies (*) if and only if (a) $R$ is commutative and $R / N$ is a Boolean (associative) ring, and $(b) u^{2}=1$ for every unit $u$ in $R$.

PROOF. "Only if": Put $x=2=y$ in (*) to get $8=0$. Put $y=x$ in (*) to get $\left(1-x+x^{2}\right)^{2}=1$ and hence

$$
\begin{equation*}
2\left(x-x^{2}\right)=\left(x-x^{2}\right)^{2} \tag{1}
\end{equation*}
$$

Obviously, $\left(x-x^{2}\right)^{6}=8\left(x-x^{2}\right)^{3}=0$, and therefore

$$
\begin{equation*}
x-x^{2} \in N \tag{2}
\end{equation*}
$$

By (1), $4 x=2\left(x-x^{2}\right)-2\left(-x-(-x)^{2}\right)=\left(x-x^{2}\right)-\left(-x-(-x)^{2}\right)^{2}=-4 x^{3}$, and hence

$$
\begin{equation*}
4 x=4 x^{3} \tag{3}
\end{equation*}
$$

Replacing $x$ by $x+1$ in (3) and noting that $8=0$, we get $4(x+1)=4(x+1)^{3}=$
$4 x^{3}+4 x^{2}+4 x+4$, and therefore by (3),

$$
\begin{equation*}
4 x=4 x^{2} \tag{4}
\end{equation*}
$$

Now, since $x^{4}=2 x^{3}-3 x^{2}+2 x$ by (1), we see that $x^{5}=2\left(2 x^{3}-3 x^{2}+2 x\right)-3 x^{3}+$ $2 x^{2}=x^{3}-4 x^{2}+4 x$, and so by (4)

$$
\begin{equation*}
x^{5}=x^{3} . \tag{5}
\end{equation*}
$$

In particular, $u^{2}=1$ (or equivalently $u^{-1}=u$ ) for every unit $u$ in $R$, proving (b). Let $u, v$ be units in $R$. Then, $u v=(v u)^{-1}=v u$; in particular, if $a \in N$, $b \in N$, then $[a, b]=[1+a, 1+b]=0$. Now, let $e \in R, e^{2}=e$, and let $t \in R$. Set $a=e t(1-e)$. Then $a^{2}=0=a e$ and $e a=a$. Since

$$
\{1-(a+e)+(a+e) e\}\{1-e+e(a+e)\}=(1-a)(1+a)=1,
$$

(*) gives $a+e=e$, and thus $a=0$, i.e., et $=e t e$. A similar argument, putting $a=(1-e) t e$, shows that $t e=e t e$, and hence $e t=t e$. Thus every idempotent element in $R$ belongs to $C$. By (5), $x^{8}=x^{6}=x^{4}$, and hence $x^{4}$ is in $C$. Now, let $a \in N$, $x \in R$. Since $x-x^{2}$ and $x^{2}-x^{4}$ are both in $N$ by (2) and $x^{4}$ is in $C$, we have $[a, x]=\left[a, x-x^{4}\right]=\left[a, x-x^{2}\right]+\left[a, x^{2}-x^{4}\right]=0$, and hence $N$ is an ideal contained in $C$. Therefore $x=\left(x-x^{2}\right)+\left(x^{2}-x^{4}\right)+x^{4} \in C$ for all $x$ in $R$, that is $R$ is commutative. Now, let $x, y, z \in R$. Then, by (2) and the commutativity of $R$,

$$
\begin{aligned}
x(y z)-(x y) z= & x(z y)+z(x y)-2 z(x y) \\
= & (x+z)\{(x+z) y\}-(x+z)^{2} y+ \\
& \left\{(x+z)^{2}-(x+z)\right\} y-\left(x^{2}-x\right) y-\left(z^{2}-z\right) y-2 z(x y) \in N,
\end{aligned}
$$

which proves that $R / N$ is associative, and therefore Boolean, proving (a).
"If" : Since $R / N$ is a Boolean ring, $x-x^{2} \in N$ and hence $1-x+x^{2}$ is a unit in $R$. Therefore, by (b), $\left(1-x+x^{2}\right)^{2}=1$, which proves one part of (*). To prove the other part of (*), suppose that $(1-x+x y)(1-y+y x)=1$. Then, by (b) and the commutativity of $R$,

$$
0=(1-x+x y)\{1-(1-x+x y) \quad(1-y+y x)\}=1-x+x y-(1-y+y x)=y-x,
$$

i. e., $x=y$. This proves the "if" part, and the theorem is proved.

Okayama University
Okayama 700
Japan

University of California
Santa Barbara
California 93106
U. S. A.

## REFERENCES

[1] T.M.K. Davison, Solution to problem E 2825, preprint.
[2] Y. Hirano, H. Tominaga and A. Yaqub, On rings satisfying the identity $\left(x+x^{2}+\cdots\right.$ $\left.+x^{n}\right)^{(n)}=0$, Math. J. Okayama Univ. 25(1983), 13-18.
[3] A. Melter, Elementary problem E2825, Amer. Math. Monthly 87(1980), 220.
[4] Y.L. Park, Conditions for rings of type $A$ to be Boolean, Kyungpook Math. J. 22 (1982), 235-237.

