THE T_{1}-CONTINUOUS FUNDAMENTAL GROUP OF A CERTAIN FINITE SPACE

By Karl R. Gentry and Hughes B. Hoyle, III

1. Introduction

Let X be a topological space and let $x_{0} \in X$. Then $C\left(X, x_{0}\right)$ will be used to denote the set of all continuous loops in X at x_{0}. The idea of using continuous functions as relating functions on $C\left(X, x_{0}\right)$ to get an equivalence relation on $C\left(X, x_{0}\right)$ has long been in existence, and extensive studies have been made of the resulting homotopy groups. In [5], we considered using certain types of non-continuous functions as relating functions on $C\left(X, x_{0}\right)$. In particular an admitting homotopy relation N was defined, which in general, turned out to be a larger class of relating functions than the class of continuous functions. Most types of non-continuous functions, including almost continuous functions: [1], C-continuous functions [2], connectivity maps [6], and T_{1}-continuous functions [4], provide an admitting homotopy relation. Also in [5], it was shown how an admitting homotopy relation N could be used to obtain a generalized homotopy group $N\left(X, x_{0}\right)$. The question has been raised as to an example of when one of these generalized homotopy groups is different from the corresponding usual homotopy group. In this paper we let N be the admitting homotopy relation T_{1}-continuous and give an example of a space X and a point $x_{0} \in X$ such that the T_{1}-continuous fundamental group $N\left(X, x_{0}\right)$ is different from the fundamental group $\Pi_{1}\left(X, x_{0}\right)$. That is if the relating functions between the loops are only required to be T_{1}-continuous, then we get a different group than if we required the relating functions between the loops to be continuous.

Throughout this paper I will be used to denote the closed unit interval with the usual topology.

2. The example

EXAMPLE. Let $X=\{a, b, c, d\}$, and let $T=\{\phi, X,\{b\},\{c\},\{b, c\},\{a, b, c\}$, $\{b, c, d\}\}$. Then $\Pi_{1}(X, b)$ is not isomorphic to $N(X, b)$.

PROOF. Let $f: I \rightarrow X$ be the continuous function defined by $f(x)=b$ for all $x \in I$ and let $g: I \rightarrow X$ be a continuous function such that $g(0)=b=g(1)$. Then since g is continuous and $\{a, b, c\} \in T, g^{-1}(\{a, b, c\})$ is open in I and thus $D=\{x \mid g(x)=d\}$ is closed in I. Similarly, $A=\{x \mid g(x)=a\}$ is closed in I.
Define $F: I \times I \rightarrow X$ by

$$
F(x, t)=\left\{\begin{array}{l}
d \text { if } x \in D \text { and } 0 \leq t \leq 1 / 2 \\
a \text { if } x \in A \text { and } 0 \leq t \leq 1 / 2 \\
g(x) \text { if } t=0 \\
b \text { otherwise }
\end{array}\right.
$$

Then F is well-defined and clearly $F(0, t)=b=F(1, t)$ for all $t \in I$ and $F(x, 0)$ $=g(x)$ and $F(x, 1)=f(x)$ for all $x \in I$. We wish to show that F is T_{1}-continuous. Let \mathscr{U} be an open cover of X. Then either $X \in \mathscr{U}$ or $\{a, b, c\}$ and $\{b, c, d\}$ are in \mathscr{U}. If $X \in \mathscr{U}$, then an open cover of $I \times I$ which will work is $\{I \times I\}$. If $\{a, b, c\}$ and $\{b, c, d\}$ are in \mathscr{U}, then an open cover of $I \times I$ which will work is $\{I \times I-D \times[0,1 / 2], I \times I-A \times[0,1 / 2]\}$. Hence, F is T_{1}-continuous. It follows that $N(X, b)$ is the trivial group.

We will now show that $I_{1}(X, b)$ has at least two elements. Once again let f te the constant loop at b and define $h: I \rightarrow X$ by

$$
h(x)=\left\{\begin{array}{l}
b \text { if } 0 \leq x<1 / 5 \\
a \text { if } 1 / 5 \leq x \leq 2 / 5 \\
c \text { if } 2 / 5<x<3 / 5 \\
d \text { if } 3 / 5 \leq x \leq 4 / 5 \\
b \text { if } 4 / 5<x \leq 1
\end{array}\right.
$$

Now f and h are loops at b and we wish to show that f and h are not homotopic modulo b. To this end suppose that there is a continuous function $F: I \times I \rightarrow X$ such that $F(x, 0)=h(x), F(x, 1)=f(x)$, and $F(0, t)=b=F(1, t)$ for all $x \in I$, $t \in I$. Let p and q be the points $p=(2 / 5,0), q=(3 / 5,0)$. Let $J=(2 / 5,3 / 5) \times\{0\}$. Since $\{c\} \in T, f^{-1}(\{c\})$ is an open subset of $I \times I$. Since $F(x, 0)=h(x)$ for all $x \in I, F^{-1}(\{c\})$ contains J. Let U be the component of $F^{-1}(\{c\})$ which contains J. Then U is open and connected and since F is h on $I \times\{0\}, f$ on $I \times\{1\}$, and b on $\{0\} \times I$ and $\{1\} \times I$, the only points on the boundary of $I \times I$ which are in U are in J. Let B be the boundary of U. Let $W=I \times I-\bar{U}$ and let $M=W \cup B \cup J$. Then $W \cup B$ is closed in $I \times I$ and since $p, q \in B, W \cup B \cup J$ is closed. Hence, M is closed. Since J is the intersection of the boundary of $I \times I$ and U, the boundary of $I \times I$ is contained in M. Let Q be the component of M which contains the boundary of $I \times I$. Then Q is closed and connected. Since Q is
bounded, Q is compact and hence a continuum. Since $I \times I$ is closed in the plane, Q is a continuum in the plane. Since J is a subset of the boundary of $I \times I$ and U is an open, connected subset of $I \times I$ containing $J, U-J$ is connected. Now $U-J$ is a connected subset of the compliment of Q. Let O be the component of the compliment of Q which contains $U-J$.
We wish to show that the boundary of O is a subset of J union"the boundary of U. Let $x \in b d \mathcal{O}$. Then $x \in M$ and thus $x \in W \cup B \cup J$. If $x \in B \cup . J$, then clearly $x \in(\operatorname{bd} U) \cup J$. Now suppose $x \in W$. Since W is an open subset of $I \times I$, there is a disc D in the plane such that $x \in D \cap(I \times I) \subset W$. Now $x \in b d O$ and thus $x \in Q$. But since D is connected and contains x and Q is the component containing $x, D \cap(I \times I) \subset Q$. Now Q contains the boundary of $I \times I$ and \mathcal{O} is a component of the compliment of Q which intersects the interior of $I \times I$. Hence, \mathcal{O} is contained in the interior of $I \times I$ and thus x is neither a point nor a limit point of \mathcal{O}. Therefore, $x \neq \mathrm{bd} \mathcal{O}$. But this is impossible. Hence, $x \neq W$. Thus, bd $\mathscr{O} \subset J \cup(b d U)$. By [12, Theorem 2.1, p. 105], since \mathcal{O} is a bounded component of the compliment of Q, the bd O is a continuum. Let K be the boundary of 0 . Let $L=K-J$. Then $L \subset$ bd U and we now wish to show that L is connested. Since $p, q \in K$ and neither p nor q is in $J, p, q \in L$. Suppose L is not connected. Then L is the union of two non-empty, mutually separated sets \mathscr{A} and \mathscr{B} with p in one of them. Say $p \in \mathscr{A}$. Suppose $q \in \mathscr{A}$. Then $K=(\mathscr{A} \cup J) \cup \mathscr{B}$. Now \mathscr{A} and \mathscr{F} are mutually separated. Since \mathcal{O} is an open subset of $I \times I$ containing J in its boundary, no point of J is a limit point of $K-J$ and no point of $K-J$ is a limit point of J except p and q. But p and q are in \mathscr{A}. Hence, J and \mathscr{F} are mutually separated. Thus, $\mathscr{A} \cup J$ and \mathscr{F} are non empty, mutually separated sets. But this is impossible, since K is connected. Thus, $q \in \mathscr{F}$. Now suppose \mathscr{A} is not connected. Then $\mathscr{A}=\alpha \cup \beta$ where α and β are non-enpty mutually separated sets with $p \in \alpha$. Then $K=\beta \cup(\alpha \cup J \cup \mathscr{F})$ where these two sets once again are mutually separated. Thus, \mathscr{A} is connected. Since J is an open subset of K, $K-J$ is closed and thus L is closed. Since \mathscr{A} is a component of L, \mathscr{A} is closed. Hence, \mathscr{A} is a continuum. Similarly, \mathscr{F} is a continuum. By [12, Theorem 3.1, 108], there is a simple closed curve Γ in the plane such that Γ separates p. from q and $\Gamma \cap(\mathscr{A} \cup \mathscr{B})=\phi$. Let Z be the boundary of $I \times I$ minus $J \cup\{p, q\}$. Then $J \cup\{p, q\}$ is a connected set containing p and q and since Γ separates p from $q, \Gamma \cap J \neq \phi$. Let $w \in \Gamma \cap J$. Similarly $\Gamma \cap Z \neq \phi$. Let $z \in \Gamma \cap Z$. Since $z \in \Gamma \cap Z$, there is a point k in the unbounded component of the compliment of the boundary of $I \times I$ such that $k \in \Gamma$ and the arc from k to z in Γ^{\prime} not containing.
w contains no point of J. Since J is in the boundary of \mathcal{O} there is a point $m \in \mathcal{O}$ such that $m \in \Gamma$ and the arc from k to m in Γ containing z contains no point of J. Let Λ be the arc in Γ from k to m containing z. Then $\Lambda \cap J=\phi$ and since $\Gamma \cap(\mathscr{A} \cup \mathscr{B})=\phi, \Lambda \cap K=\phi$. But then the component of the compliment of K containing O is not a subset of the interior of $I \times I$, which is impossible. Hence, L is connected. Since $L=K-J$ and $K \subset(b d U) \cup J, L \subset b d U$. Hence a connected subset of the boundary of U contains both p and q.
Let P be the component of the boundary B of U which contains p and q. Then since B is closed, P is closed.

Now U was the component of $F^{-1}(\{c\})$ containing J. Thus, no point of B is in $F^{-1}(\{c\})$, for if $x \in B$ and $F(x)=c$, then since F is continuous at x, there is a disc E such that $x \in E \cap(I \times I)$ and $F(E \cap(I \times I))=\{c\}$. But $E \cap U \neq \phi$, since x is in the boundary of U. Hence, $U \cup E$ is connected and U was not maximal since E must also contain a point not in U since x is in the boundary of U. No point of B is in $F^{-1}(\{b\})$, for if $x \in B$ and $F(x)=b$, then since F is continuous at x, there is a disc G such that $x \in G \cap(I \times I)$ and $F(G \cap(I \times I))=\{b\}$. But G contains no point of $F^{-1}(\{c\})$ and hence no point of U. Hence, $F(B) \subset\{a, d\}$. But $F(p)=a$ and $F(q)=d$. Hence, $F(B)=\{a, d\}$. Since $\{a, b, c\} \in T, F^{-1}(d)$ is closed. Similarly $F^{-1}(a)$ is closed. Since P is closed, $P \cap F^{-1}(a)$ and $P \cap F^{-1}(d)$ are closed. But $P \subset B$ containing p and q. Thus $P=\left(P \cap F^{-1}(a)\right) \cup\left(P \cap F^{-1}(d)\right)$ which is a contradiction since P is connected and $P \cap F^{-1}(a)$ and $P \cap F^{-1}(d)$ are non-empty closed sets. Thus, no such continuous function F can exist and f and h are not homotopic modulo b. Hence $\Pi_{1}(X, b)$ has at least two elements and $N(X, b)$ cannot be isomorphic to $\Pi_{1}(X, b)$.

> The University of North Carolina Greensboro, North Carolina 27412 U.S. A.

REFERENCES

[1] Z. Frolik, Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. 11(86) (1961), 381-385.
[2] K.R. Gentry and H.B. Hoyle, II, C-continuous functions, Yokohama Mathematical Journal 18(1970), 71-76.
[3] K.R. Gentry and H.B. Hoyle, III, C-continuous fundamental groups, Fundamenta

Mathematicae, 76(1972), 9-17.
[4] K. R. Gentry and H.B. Hoyle, II, Ti-Continuous functions and separation axioms, Glasnik Matematicki 17(37) (1982), 139-145.
[5] K. R. Gentry and H. B. Hoyle, III, Generalized fundamental groups of continuous loops, J. Korean Math. Soc., to appear
[6] H. B. Hoyle, III, Connectivity maps and almost continuous functions, Duke Mathematical Journal 37(1970), 671-680.
[7] S. G. Hwang, Almost C-continuous functions, J. Korean Math. Soc. 14(1978), 229234.
[8] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68(1961), 44-46.
[9] P.E. Long and T.R. Hamlett, H-continuous functions, Bull. Un. Mat. Ital. 4(11) (1975), 552-558.
[10] Takashi Noiri, On δ-continuous functions, J. Korean Math. Soc. 16(2) (1980), 161166.
[11] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. (47) (1959), 249-263.
[12] G. T. Whyburn, Analytic Topology, AMS Colloquium Publication, 28(1942).

