THE T₁-CONTINUOUS FUNDAMENTAL GROUP OF A CERTAIN FINITE SPACE

By Karl R. Gentry and Hughes B. Hoyle, III

1. Introduction

Let X be a topological space and let $x_0 \in X$. Then $C(X, x_0)$ will be used to denote the set of all continuous loops in X at x_0 . The idea of using continuous functions as relating functions on $C(X, x_0)$ to get an equivalence relation on $C(X, x_0)$ has long been in existence, and extensive studies have been made of the resulting homotopy groups. In [5], we considered using certain types of non-continuous functions as relating functions on $C(X, x_0)$. In particular an admitting homotopy relation N was defined, which in general, turned out to be a larger class of relating functions than the class of continuous functions. Most types of non-continuous functions, including almost continuous functions [1], C-continuous functions [2], connectivity maps [6], and T₁-continuous functions [4], provide an admitting homotopy relation. Also in [5], it was shown how an admitting homotopy relation N could be used to obtain a generalized homotopy group $N(X, x_0)$. The question has been raised as to an example of when one of these generalized homotopy groups is different from the corresponding usual homotopy group. In this paper we let N be the admitting homotopy relation T_1 -continuous and give an example of a space X and a point $x_0 \in X$ such that the T_1 -continuous fundamental group $N(X, x_0)$ is different from the fundamental group $I_1(X, x_0)$. That is if the relating functions between the loops are only required to be T1-continuous, then we get a different group than if we required the relating functions between the loops to be continuous.

Throughout this paper I will be used to denote the closed unit interval with the usual topology.

2. The example

4

EXAMPLE. Let $X = \{a, b, c, d\}$, and let $T = \{\phi, X, \{b\}, \{c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then $\Pi_1(X, b)$ is not isomorphic to N(X, b).

PROOF. Let $f: I \to X$ be the continuous function defined by f(x) = b for all $x \in I$ and let $g: I \to X$ be a continuous function such that g(0) = b = g(1). Then since g is continuous and $\{a, b, c\} \in T$, $g^{-1}(\{a, b, c\})$ is open in I and thus $D = \{x | g(x) = d\}$ is closed in I. Similarly, $A = \{x | g(x) = a\}$ is closed in I. Define $F: I \times I \to X$ by

$$F(x, t) = \begin{cases} d \text{ if } x \in D \text{ and } 0 \le t \le 1/2 \\ a \text{ if } x \in A \text{ and } 0 \le t \le 1/2 \\ g(x) \text{ if } t = 0 \\ b \text{ otherwise} \end{cases}$$

Then F is well-defined and clearly F(0, t) = b = F(1, t) for all $t \in I$ and F(x, 0) = g(x) and F(x, 1) = f(x) for all $x \in I$. We wish to show that F is T_1 -continuous. Let \mathscr{U} be an open cover of X. Then either $X \in \mathscr{U}$ or $\{a, b, c\}$ and $\{b, c, d\}$ are in \mathscr{U} . If $X \in \mathscr{U}$, then an open cover of $I \times I$ which will work is $\{I \times I\}$. If $\{a, b, c\}$ and $\{b, c, d\}$ are in \mathscr{U} , then an open cover of $I \times I$ which will work is $\{I \times I\}$. If $\{a, b, c\}$ and $\{b, c, d\}$ are in \mathscr{U} , then an open cover of $I \times I$ which will work is $\{I \times I - D \times [0, 1/2], I \times I - A \times [0, 1/2]\}$. Hence, F is T_1 -continuous. It follows that N(X, b) is the trivial group.

We will now show that $I_1(X, b)$ has at least two elements. Once again let f be the constant loop at b and define $h: I \to X$ by

$$h(x) = \begin{cases} b \text{ if } 0 \le x < 1/5 \\ a \text{ if } 1/5 \le x \le 2/5 \\ c \text{ if } 2/5 < x < 3/5 \\ d \text{ if } 3/5 \le x \le 4/5 \\ b \text{ if } 4/5 < x \le 1 \end{cases}$$

Now f and h are loops at b and we wish to show that f and h are not homotopic modulo b. To this end suppose that there is a continuous function $F: I \times I \to X$ such that F(x, 0) = h(x), F(x, 1) = f(x), and F(0, t) = b = F(1, t) for all $x \in I$, $t \in I$. Let p and q be the points p = (2/5, 0), q = (3/5, 0). Let $J = (2/5, 3/5) \times \{0\}$. Since $\{c\} \in T$, $f^{-1}(\{c\})$ is an open subset of $I \times I$. Since F(x, 0) = h(x) for all $x \in I$, $F^{-1}(\{c\})$ contains J. Let U be the component of $F^{-1}(\{c\})$ which contains J. Then U is open and connected and since F is h on $I \times \{0\}$, f on $I \times \{1\}$, and b on $\{0\} \times I$ and $\{1\} \times I$, the only points on the boundary of $I \times I$ which are in U are in J. Let B be the boundary of U. Let $W = I \times I - \overline{U}$ and let $M = W \cup B \cup J$. Then $W \cup B$ is closed in $I \times I$ and since p, $q \in B$, $W \cup B \cup J$ is closed. Hence, M is closed. Since J is the intersection of the boundary of $I \times I$ and U, the boundary of $I \times I$ is contained in M. Let Q be the component of M which contains the boundary of $I \times I$. Then Q is closed and connected. Since Q is bounded, Q is compact and hence a continuum. Since $I \times I$ is closed in the plane, Q is a continuum in the plane. Since J is a subset of the boundary of $I \times I$ and U is an open, connected subset of $I \times I$ containing J, U-J is connected. Now U-J is a connected subset of the compliment of Q. Let \mathcal{O} be the component of the compliment of Q which contains U-J.

We wish to show that the boundary of \mathcal{O} is a subset of J union"the boundary of U. Let $x \in bd \mathcal{O}$. Then $x \in M$ and thus $x \in W \cup B \cup J$. If $x \in B \cup J$, then clearly $x \in (bd \ U) \cup J$. Now suppose $x \in W$. Since W is an open subset of $I \times I$, there is a disc D in the plane such that $x \in D \cap (I \times I) \subset W$. Now $x \in bd \mathcal{O}$ and thus $x \in Q$. But since D is connected and contains x and Q is the component containing x, $D \cap (I \times I) \subset Q$. Now Q contains the boundary of $I \times I$ and \mathcal{O} is a component of the compliment of Q which intersects the interior of $I \times I$. Hence, \mathcal{O} is contained in the interior of $I \times I$ and thus x is neither a point nor a limit point of \mathcal{O} . Therefore, $x \notin bd \mathcal{O}$. But this is impossible. Hence, $x \notin W$. Thus, bd $\mathcal{O} \subset J \cup (bd U)$. By [12, Theorem 2.1, p. 105], since \mathcal{O} is a bounded component of the compliment of Q, the bd \mathcal{O} is a continuum. Let K be the boundary of \mathcal{O} . Let L=K-J. Then $L \subset bd$ U and we now wish to show that L is connected. Since $p, q \in K$ and neither p nor q is in $J, p, q \in L$. Suppose L is not connected. Then L is the union of two non-empty, mutually separated sets $\mathcal A$ and $\mathcal B$ with p in one of them. Say $p \in \mathscr{A}$. Suppose $q \in \mathscr{A}$. Then $K = (\mathscr{A} \cup J) \cup \mathscr{B}$. Now \mathscr{A} and \mathscr{B} are mutually separated. Since \mathscr{O} is an open subset of $I \times I$ containing J in its boundary, no point of J is a limit point of K-J and no point of K-J is a limit point of J except p and q. But p and q are in \mathcal{A} . Hence, J and \mathcal{A} are mutually separated. Thus, $\mathcal{A} \cup J$ and \mathcal{B} are non empty, mutually separated sets. But this is impossible, since K is connected. Thus, $q \in \mathscr{B}$. Now suppose \mathscr{A} is not connected. Then $\mathcal{A} = \alpha \cup \beta$ where α and β are non-empty mutually separated sets with $p \in \alpha$. Then $K = \beta \cup (\alpha \cup J \cup \mathscr{B})$ where these two sets once again are mutually separated. Thus, \mathcal{A} is connected. Since J is an open subset of K, K-J is closed and thus L is closed. Since \mathscr{A} is a component of L, \mathscr{A} is closed. Hence, A is a continuum. Similarly, B is a continuum. By [12, Theorem 3.1, 108], there is a simple closed curve Γ in the plane such that Γ separates pfrom q and $\Gamma \cap (\mathcal{A} \cup \mathcal{B}) = \phi$. Let Z be the boundary of $I \times I$ minus $J \cup \{p, q\}$. Then $J \cup \{p, q\}$ is a connected set containing p and q and since Γ separates p from q, $\Gamma \cap J \neq \phi$. Let $w \in \Gamma \cap J$. Similarly $\Gamma \cap Z \neq \phi$. Let $z \in \Gamma \cap Z$. Since $z \in \Gamma \cap Z$, there is a point k in the unbounded component of the compliment of the boundary of $I \times I$ such that $k \in \Gamma$ and the arc from k to z in Γ not containing w contains no point of J. Since J is in the boundary of \mathcal{O} there is a point $m \in \mathcal{O}$ such that $m \in \Gamma$ and the arc from k to m in Γ containing z contains no point of J. Let Λ be the arc in Γ from k to m containing z. Then $\Lambda \cap J = \phi$ and since $\Gamma \cap (\mathcal{A} \cup \mathcal{B}) = \phi, \Lambda \cap K = \phi$. But then the component of the compliment of K containing \mathcal{O} is not a subset of the interior of $I \times I$, which is impossible. Hence, L is connected. Since L = K - J and $K \subset (\operatorname{bd} U) \cup J$, $L \subset \operatorname{bd} U$. Hence a connected subset of the boundary of U contains both p and q.

Let P be the component of the boundary B of U which contains p and q. Then since B is closed, P is closed.

Now U was the component of $F^{-1}(\{c\})$ containing J. Thus, no point of B is in $F^{-1}(\{c\})$, for if $x \in B$ and F(x) = c, then since F is continuous at x, there is a disc E such that $x \in E \cap (I \times I)$ and $F(E \cap (I \times I)) = \{c\}$. But $E \cap U \neq \phi$, since x is in the boundary of U. Hence, $U \cup E$ is connected and U was not maximal since E must also contain a point not in U since x is in the boundary of U. No point of B is in $F^{-1}(\{b\})$, for if $x \in B$ and F(x) = b, then since F is continuous at x, there is a disc G such that $x \in G \cap (I \times I)$ and $F(G \cap (I \times I)) = \{b\}$. But G contains no point of $F^{-1}(\{c\})$ and hence no point of U. Hence, $F(B) \subset \{a, d\}$. But F(p) = a and F(q) = d. Hence, $F(B) = \{a, d\}$. Since $\{a, b, c\} \in T$, $F^{-1}(d)$ is closed. Similarly $F^{-1}(a)$ is closed. Since P is closed, $P \cap F^{-1}(a)$ and $P \cap F^{-1}(d)$ are closed. But $P \subset B$ containing p and q. Thus $P = (P \cap F^{-1}(a)) \cup (P \cap F^{-1}(d))$ which is a contradiction since P is connected and $P \cap F^{-1}(d)$ are non-empty closed sets. Thus, no such continuous function F can exist and f and h are not homotopic modulo b. Hence $\Pi_1(X, b)$ has at least two elements and N(X, b) cannot be isomorphic to $\Pi_1(X, b)$.

The University of North Carolina Greensboro, North Carolina 27412 U.S.A.

REFERENCES

- Z. Frolik, Remarks concerning the invariance of Baire spaces under mappings, Czech. Math. J. 11(86) (1961), 381-385.
- [2] K.R. Gentry and H.B. Hoyle, II, C-continuous functions, Yokohama Mathematical Journal 18(1970), 71-76.
- [3] K.R. Gentry and H.B. Hoyle, I, C-continuous fundamental groups, Fundamenta

Mathematicae, 76(1972), 9-17.

- [4] K.R. Gentry and H.B. Hoyle, II, T_i -Continuous functions and separation axioms, Glasnik Matematicki 17(37) (1982), 139-145.
- [5] K.R. Gentry and H.B. Hoyle, II, Generalized fundamental groups of continuous loops, J. Korean Math. Soc., to appear
- [6] H.B. Hoyle, II, Connectivity maps and almost continuous functions, Duke Mathematical Journal 37(1970), 671-680.
- [7] S.G. Hwang, Almost C-continuous functions, J. Korean Math. Soc. 14(1978), 229-234.
- [8] N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68(1961), 44-46.
- [9] P.E. Long and T.R. Hamlett, *H-continuous functions*, Bull. Un. Mat. Ital. 4(11) (1975), 552-558.
- [10] Takashi Noiri, On δ-continuous functions, J. Korean Math. Soc. 16(2) (1980), 161-166.
- [11] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. (47) (1959), 249-263.
- [12] G.T. Whyburn, Analytic Topology, AMS Colloquium Publication, 28(1942).