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1. Introduction

Let X be a topological space and let z &X. Then C(X, z,) will be used to
denote the set of all continuous loops in X at z. The idea of using continuous
functions as relating functions on C(X, xo) to get an equivalence relation on
C(X, .z-o) has long been in existence, and extensive studies have been made of
the resulting homotopy groups. In [5], we considered using certain types of
non-continuous functions as relating functions on C(X, zo). In particular an
admitting homotopy relation N was defined, which in general, turned out to
be a larger class of relating functions than the class of continuous functions.
Most types of non-continuous functions, including almost continuous functions:
[1], C-continuous functions [2], connectivity maps [6], and T -continuous
functions [4], provide an admitting homotopy relation. Also in [5], it was
shown how an admitting homotopy relation N could be used to obtain a
generalized homotopy group N(X, z,). The question has been raised as to an

example of when one of these generalized homotopy groups is different from
the corresponding usual homotopy group. In this paper we let N be the admitting
homotopy relation 7' -continuous and give an example of a space X and a point
:cOEX such that the Tl—c:Ontinuous fundamental group N(X, z,) is different
from the fundamental group II (X, z)). That is if the relating functions
between the loops are only required to be Tl—c:)ntinuous, then we get a
different group than if we required the relating functions between the loops

to be continuous.
Throughout this paper 1 will be used to denote the closed unit interval with

the usual topology.
2. The example

EXAMPLE. Let X={a, b, ¢, d}, and let T={¢, X, {&}, {c}, {6, ¢}, la, b, c}.
{b, ¢, d}}. Then HI(X, b) is not isomorphic to N(X, &).
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PROOF. Let f:I—-X be the continuous function defined by f(z)=%& for all
2&I and let g : I-X be a continuous function such that g(0)=&é=g(1). Then
since g is continuous and {a, b, c}ET, g '(la, &, ¢}) is open in I and thus
D={x|g(zx)=d)} is closed in I. Similarly, A={x|g(z)=al is closed in I.

Define F: IxI—-X by

d if x&€D and 0<<¢<<1/2
[a if z=A4 and 0<¢<1/2
g(z) if ¢=0
b otherwise
Then F is well-defined and clearly F(0, z)=6=F(1, ¢) for all t&I and F(z, 0)
=g(z) and F(z, 1)=f(z) for all z&I. We wish to show that F is T',-continuous.
Let Z be an open cover of X. Then either X&% or {a, b, ¢} and {5, ¢, d} are
in Z7. If X%/, then an open cover of IxI which will work is {{xI}. If
{a, b, ¢} and {b, ¢, d} are in 2/, then an open cover of IxJ which will work
is (IxI—-Dx]J0, 1/2], IxI—Ax[0, 1/2]}. Hence, F is T ,-continuous. It follows

that N(X, &) is the trivial group.
We will now show that II (X, &) has at least two elements. Once again let

Flz, t)=

f te the constant loop at & and define % : I—X by

(b if 0<2<1/5
a if 1/5<2<2/5
¢ if 2/5<x<3/5
d if 3/56<x<4/5
b if 4/5<z<1
Now f and k are loops at & and we wish to show that f and 4 are not homotopic
modulo 4. To this end suppose that there is a continuous function F:lx/—X
such that F(z, 0)=h(z), F(z, 1)=f(z), and F(0, ¢)=b6=F(1, ¢) for all z&],
tEl. Let p and ¢ be the points p=(2/5, 0), ¢g=(3/5, 0). Let J=(2/5, 3/5)x {(0}.
Since {c}ET, f—l({c}) is an open subset of /x/. Since F(z, 0)=h(z) for all
z&l, F '({c}) contains J. Let U be the component of F~'({c}) which contains
J. Then U is open and connected and since F is 2 on Ix {0}, f on Ix {1}, and
b on {0} xI and {1} X/, the only points on the boundary of /xI which are in
U are in J. Let B be the boundary of U. Let W=IxI—U and let M=WJBUJ.
Then WUB is closed in I/ and since p, ¢=B, W BUJ is closed. Hence, M
is closed. Since J is the intersection of the boundary of IxI and U, the
boundary of IxI is contained in M. Let Q be the component of M which
contains the boundary of /xI. Then Q is closed and connected. Since Q is

h(z)=
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bounded, Q is compact and hence a continuum. Since X[ is closed in the
plane, Q is a continuum in the plane. Since J is a subset of the boundary of
IxI and U is an open, connected subset of IxI containing J, U—J is connected.
Now U—J is a connected subset of the compliment of Q.Let <7 be the component
of the compliment of @ which contains U—.J.

We wish to show that the boundary of ¢ is a subset of J union’'the boundary
of U let z=bd . Then z=M and thus WU BUJ. If 2€BU.J, then
clearly r=(bd U)|UJ. Now isuppose z&W. Since W is an open subset of Ix/,
there is a disc D in the plane such that z&DN (I <I)CW. Now zEbd ¢ and
thus x0Q. But since D is connected and contains z and Q is the component
containing x, DN(Ix1)—Q. Now Q contains the boundary of IxI and ¢ is a
component of the compliment of Q which intersects the interior of 7x</. Hence,
¢ is contained in the interior of I and thus z is neither a point nor a limit
point of 7. Therefore, x#bd /7. But this is impossible. Hence, z#W. Thus,
bd @#<=JU (bd U). By 12, Theorem 2.1, p.105], since ¢ is a bounded component
of the compliment of Q, the bd < is a continuum. Let K be the boundary of
¢. Let L=K—J. Then LC_hd U and we now wish to show that L is connected.
Since p, ¢g=K and neither p nor g is in J, p, ¢=L. Suppose L is not connected.
Then L is the union of two non-empty, mutually separated sets .% and & with
2 in one of them. Say p&.%. Suppose ¢=.%'. Then K= (% JJ)U&#. Now ¢ and
&7 are mutually separated. Since /7 is an open subset of I X/ containing J in its
boundary, no point of J is a limit point of K—J and no point of K—J is a limit
point of J except » and ¢g. But p and g are in .. Hence, J and & are mutually
separated. Thus, & |JJ and &7 are non empty, mutually separated sets. But this
is impossible, since K is connected. Thus, ¢=%7. Now suppose % is not
connected. Then & =a|)3 where a and 3 are non-emnpty mutually separated
sets with p=a. Then K=3U (aUJU ) where these two sets once again are
mutually separated. Thus, % is connected. Since J is an open subset of K,
K—J is closed and thus L is closed. Since 5% is a componeat of L, % is closed.
Hence, . is a continuum. Similarly, &# is a continuum. By [12, Theorem 3.1,
108], there is a simple closed curve I' in the plane such that /' separates p
from ¢ and I'N(7 |J&#)=¢. Let Z be the boundary of IxI minus JU (p, q}.
Then JU {p, ¢} is a connected set containing p and ¢ and since [’ separates p
from g, I'NJ+#¢. Let welNJ. Similarly P'NZ+#p. Let z&=l'NZ. Since zEINNZ,
there is a point k¢ in the unbounded component of the compliment of the
boundary of IxI such that #&I" and the arc from % to z in " not containing
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w contains no point of J. Since J is in the boundary of ¢ there is a point me
such that m&! and the arc from % to m in [ containing =z contains no point
of J. Let A be the arc in /" from % to m containing z. Then ANJ=¢ and since
I'n(w U&#)=¢, ANK=¢. But then the component of the compliment of K
containing ¢ is not a subset of the interior of IxI, which is impossible.
Hence, L is connected. Since L=K-J and K< (bd NUJ, Lcbd U. Hence a
connected subset of the boundary of U contains both # and gq.

Let P be the component of the boundary B of U which contains p and ¢. Then
since B is closed, P is closed.

Now U was the component of F_l({c}) containing /. Thus, no point of B
1S in F_I([c}), for if z&B and F(z)=c, then since F is continuous at z, there
is a disc E such that zEEN (1<) and F(EN(IxI))=({c). But ENU+¢, since
z is in the boundary of U. Hence, UUE is connected arnd U was not maximal
since £ must also contain a point not in U since z is in the boundary of U.
No point of B is in F_[([é}), for if x&B and F(x) =4, then since F is continuous
at z, there is a disc G such that =GN U xI) and F(GN({Ix1))={b}. But G
contains no point of F~'({c}) and hence no point of U. Hence, F(B)C {a, d}.
But F(p)=a and F(q)=d. Hence, F(B)={a, d}. Since {a, b, cJET, F () is
closed. Similarly F '(a) is closed. Since P is closed, PNF '(a) and PNF ' (d)
are closed. But PCB containing p and ¢. Thus P=(PNF Ya))u(enrF Hd))
which is a contradiction since P is connected and PNF '(a) and PNF "Y(a)
are non-empty closed sets. Thus, no such continuous function F can exist and
Jf and A are not homotopic modulo 4. Hence II (X, &) has at least two elements
and N(X, &) cannot be isomorphic to IT 1(X, b).
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