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1. Introduction

The perturbation method of K.B. tll and H. [2] enables us to obtain the
approximate oscillations of a set of a weakly non-linear oscillatory system
with constant natural frequency. However, there exist some physical systems
whose natural frequency has a slowly varying lurameter, for example: the
motion of a simple pendulurn with variable length, the distribution of the
energy released in a nucleat-power€d rcactor as a rcsult of a poeer excursion
[3] [4], electrical circuits containing psram€ters that are timc varying f5l,
and so on.

In general the mathematical analysis of such systems leads to the second
order diff erential equation of the form:

i+@2(t)r=eFk, n) (l)
where rr.,"(r) is an arbitrary function of the slowly varying parameter ,, € is a
small parameter and F is an arbitrary function of the valiable .., i. The
proposed procedure for analysing such systems is based on the extension of
the method of K.B. or H. for treating the oscillatory system with constant
frequency.

2. Propoeed method

The homogeneous equation corresponding to equation (l) (for e=0) is a linear
diff erential equation with a slowly varying pararneter, clo6e to an exact integrable

one when @ satisfies the condition $<<f. An approximate solution is

obtainable in the form of the constant ar solution [6].
r(r)=4 sin /(r) Ii(t): ArD @s .l'Q) )

where./t:@t+o, 4 and / are the integration constants. Equation (Z) are used
as a generating solution, nrhen e+0, A and / are considered unknown functions
of t, and ar is a known function of t in equation (2). By differentiating the

(2)



dt A('JA{'+Ad crtr'0+A sin 4'=9
Also when differentiating t}te second equation of (2) and substituting

equation (l) we obtain
dA ccE.l-adt A snatl-ad sin t/t+ Aa cos /:e.F

Solving (3) and (4) for.ri and f yields to
. GF-aA qs O\

0= -at-sfi 9 -'-----6T-

A=erro -r @,0

+:-# indies, A:f
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first equation of (2) and taking in our consideration t}te second equation of(2),
we obtain the following

The set of differential equations (5), (6) are equivalent to equation (l). For

4<<f, and when A and C changes slowly with the independent variable I
a

the amplitude A and the phase C may be obtaind by taking the sverage of

R.H.S of equatiom (5) rnd (6) over one period. Then

<+>:#I: Flu-s;n.t, A!'rxl.l) "o"oao-#lf,62odo Q)

<#>:AT If ,r^ sin4, Aa c(x'clt) sin$ dL+a (8)

where (rrr) =o.
ln the above expressions r{ and / are taken custants under the integral

signs. Carrying t}le average one can obtain the amplitude' the phase and an

analytical expression of the solution as a first apProximation. It is interesting

to note that the resulting solution obtaitted by the proposed method for e:0
has the sarne form of the solution using the first BWK aPproximation [5].

Also, by taking @ as a @nstant we get the same result as the (K. 8) and

Haag methods.

For the purpose of comporison, it is interesting to justifv the applicability of
the proposed technique for different oscillaory systems with knowu solutions.

8. Appllcrtions

(l) Mathieu equation

In this case we have

rl21t1=af,6-n cls gt), €:o
Applying (?) and (8) we get

(3)

into

(4)

(5)

(6)



A Pcrt.rbation tuhthod for a S.t ol Quas;-Linaar Otcillator! Stttcmt uith
v ar iabl. N 4tur al Fr.qucnc!

d'Itjfi=. impties, {)= tudt+6o

where c and Co are arbitrary constants,

Substituting from (9) and (10) into (2) we get

c

":WT:iffisin (tudt+60)

This result agrees with tle familiar result obtained

method. The same result can be obtaind using the
. ^. 2by considering e=Zlu'i as a small parameter.

(2) Damped Mathieir equation.
In this case F(t, i)=-i, and @(r) is defined as first application. By

applying our approach we get from (?) and (8) the following
dA A/ .b\-Zt - --T\e+-;)
da-z;-:'

from which we deduce:

A= WF# c- 
(lztt, l': !.'dt+Oo.

( l1)

from BWK approximation
perturbation method [7]

hence

(13)

(14)t (tl : n7#fr; c- G/2' t sin(la'dt + 6ol

which is the same result obtained by I5l.
(3) The Van de! Pol oscillatory type.

In this case we have: F(r, i)=-(rz-l)i
From equations (?) and (8) we get

J+:+ [-2' (t" sin2,l, 
"o"',p-A 

cos2(, d(,- += | ̂ '* *"",!a,/,dt zE JO aE(D J0

-eA3 eA .n:---E---Z--T
and

3!= e!- f o 
sirr3,, .osdt l1E JO ado-| [f, "t"O 

c<x-g&l]a=a

By solving €quations (15) and (16) we have

I ec-d r ," ,. . ,r-l'12)t
A, = --V- , 

- 
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$= Iadt+0o
from which the solution msy be obtained. In this case ar is defined as in f8l.
If we take a, as a constant, the above result agrees with tle result obtained
by the K. B method.

(4) General Lord Rayleigh oscillatory type
In tlris application we have F(r, i):2ht-ci3 where I and c are positives.

Fr@ (7) and (8) we harrc

$=*e-!"d","-#o
da
i7=t

After the intcgration of equations (19) and (20) we can obtain

i:"-o'I 'o'dt+Aoue-N'

0= f.dt+6o

(18)

(le)

(n)

(21)

(22)

where Ao and /o are the integration const$ts.
Fmm (21) a\d (n), the solution can be obtained where ro is defined and also
the golution of the Lord Brytcittr oscillatrt eyotcra with constant @ can be
obtained.
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