Kyungpook Math. J.
Volume 25, Number 2
December, 1985

A PERTURBATION METHOD FOR A SET OF QUASI-LINEAR
OSCILLATORY SYSTEMS WITH VARIABLE NATURAL FREQUENCY
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1. Introduction

The perturbation method of K.B. [1] and H. [2] enables us to obtain the
approximate oscillations of a set of a weakly non-linear oscillatory system
with constant natural frequency. However, there exist some physical systems
whose natural frequency has a slowly varying parameter, for example: the
motion of a simple pendulum with variable length, the distribution of the
energy released in a nuclear-powered reactor as a result of a power excursion
[3] [4], electrical circuits containing parameters that are time varying [5],
and so on.

In general the mathematical analysis of such systems leads to the second
order diff erential equation of the form:

P+’ (t)z=¢eF(z, #) (1)
where w’(¢) is an arbitrary function of the slowly varying parameter z, ¢ is a
small parameter and F is an arbitrary function of the variable z, #. The
proposed procedure for analysing such systems is based on the extension of
the method of K.B. or H. for treating the oscillatory system with constant
frequency.

2. Proposed method

The homogeneous equation corresponding to equation (1) (for €=0) is a linear
diff erential equation with a slowly varying parameter, close to an exact integrable

one when w satisfies the condition %—((1. An approximate solution is
w

obtainable in the form of the constant w solution [6].
z(t)=A sin ¢(¢)
z(t)=Aw cos ¢-(t)}

where ¢=wt+¢, A and ¢ are the integration constants. Equation (2) are used

(2)

as a generating solution, when €0, A and ¢ are considered unknown functions
of ¢, and w is a known function of ¢ in equation (2). By differentiating the
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first equation of (2) and taking in our consideration the second equation of(2),
we obtain the following

@t Acos ¢+ Ad cos ¢+ A sin ¢=0 (3)
Also when differentiating the second equation of (2) and substituting into
equation (1) we obtain

@A cos ¢—wat Asin¢—wd sin ¢+ Aw cos ¢=¢cF (4)
Solving (3) and (4) for A and ¢ yields to
; . F—&A cos ¢
§=—wt—sin g FE—02 05 ¢) (5)
i eFcos¢g A 5,
A= = o oS¢ (6)

The set of differential equations (5), (6) are equivalent to equation (1). For

—‘b;<<1, and when A and ¢ changes slowly with the independent variable ¢
o

the amplitude A and the phase ¢ may be obtaind by taking the average of
R.H.S of equation (5) and (6) over one period. Then

dA e 2 i ’ wA 2z 2,9,
<T¢>“2}Ifo F(A sin ¢, Aw cos §) cos gd——5 ﬁ) cos’pdg  (7)

g—?>: Z;wEA fuuu F(A sin ¢y, Aw cos¢) sin¢ dg+w (8)

where {(w)=w.

In the above expressions A and ¢ are taken constants under the integral
signs. Carrying the average one can obtain the amplitude, the phase and an
analytical expression of the solution as a first approximation. It is interesting
to note that the resulting solution obtained by the proposed method for e=0
has the same form of the solution using the first BWK approximation [5].
Also, by taking w as a constant we get the same result as the (K. B) and
Haag methods.

For the purpose of comparison, it is interesting to justify the applicability of
the proposed technique for different oscillatory systems with known solutions.

3. Applications

(1) Mathieu equation
In this case we have
o*(8) =0} (1—2h cos Qt), €=0

Applying (7) and (8) we get

%z—% implies, A=

4

v

(9)
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d¢ . . e 4
2 =Y implies, ¢=fwdt+g, (10)

where ¢ and ¢, are arbitrary constants.
Substituting from (9) and (10) into (2) we get

sin (fwdt+4,) (11)

¢

¥ W, V1—2k cos 0t
This result agrees with the familiar result obtained from BWK approximation
method. The same result can be obtained using the perturbation method [7]
by considering s:Zhwﬁ as a small parameter.

(2) Damped Mathieu equation.

In this case F(x, &#)=—&, and w(¢) is defined as first application. By
applying our approach we get from (7) and (8) the following

-%(‘;b—=w
from which we deduce:
4= “‘u«/l—.{h cos Qt e, ¢=Jwdt+4, (13)
hence
w0 ‘”o«/lfzch cos Q¢ S sin(J'wdz+¢o) Ut

which is the same result obtained by [5].
(3) The Van der Pol oscillatory type.
In this case we have: F(z, i)z_(xz—l)jc

From equations (7) and (8) we get

dT‘g=—2_7:— i 7 (47 sin’g cos’g— A cos’) dp— ﬁ] # cos’gdy
= _§A3 e (15)
and
%-z 52“}: foz" sin’g cos gdg—— foz" sin ¢ cos gdg+w=w (16)
By solving equations (15) and (16) we have
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¢=Jwdt+¢, (18)
from which the solution may be obtained. In this case w is defined as in [8].
If we take w as a constant, the above result agrees with the result obtained
by the K.B method.
(4) General Lord Rayleigh oscillatory type
In this application we have F(z, i-):Zka‘:—c:ta where £ and ¢ are positives.
From (7) and (8) we have

fi—?=kA—%cA3mz—%A (19)
j—f=m (20)
After the integration of equations (19) and (20) we can obtain
j2—=ce-ktmf M wdr+ Aowe_kt (21)
o= f wdt+¢, (22)

where A, and ¢, are the integration constants.

From (21) and (22), the solution can be obtained where w is defined and also
the solution of the Lord Rayleigh oscillatry system with constant @ can be
obtained.
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