Kyungpook Math. J. Volume 25, Number 2 December, 1985

ON SEMI-WEAKLY CONTINUOUS MAPPINGS

By T. Noiri and B. Ahmad

1. Introduction

In 1961, N. Levine [1] introduced the concept of weakly continous mappings. P. E. Long and D. A. Carnahan [3] studied several properties of almost continous mappings in the sense of Singal [6]. T. Noiri [4] pointed out that the word "almost continuous" can be replaced by "weakly continuous" in some theorems of [3]. The purpose of this note is to introduce a new class of mappings called semi-weakly continuous mappings and investigate some properties analogous to those given in [4] concerning weakly continuous mappings,

2. Preliminaries

Let X be a topological space and S be a subset of X. A subset S is said to be semi-open [2] if there exists an open set U such that $U \square S \square Cl(U)$, where Cl(U) denotes the closure of U. The complement of a semi-open set is called semi-closed. The union of all semi-open sets of X contained in S is called the semi-interior of S and denoted by slnt(S). The intersection of all semi-closed sets of X containing S is called the semi-closure of S and denoted by sCl(S). A mapping $f: X \rightarrow Y$ is said to be weakly continuous [1] (resp. almost continuous [6]) if for each $x \oplus X$ and each open set V containing f(x) there exists an open set U containing x such that $f(U) \square Cl(V)$ (resp. $f(U) \square Int(Cl(V))$), where Int(S) is the interior of S.

3. Semi-weakly continuous mappings

DEFINITION 1. A mapping $f: X \rightarrow Y$ is called *semi-weakly continuous* (briefly s.w.c.) if for each $x \in X$ and each open set V containing f(x) there exsits a semi-open set U containing x such that $f(U) \subseteq sCl(V)$.

A mapping $f: X \to Y$ is said to be *semi-continuous* [2] if for each open set V of Y, $f^{-1}(V)$ is semi-open in X. In [2, Theorem 12], it is known that a mapping $f: X \to Y$ is semi-continuous if and only if for each $x \in X$ and each open set V containing f(x) there exists a semi-open set U containing x such that $f(U) \subset V$. Therefore, every semi-continuous mapping is s.w.c., but the converse is not

true as the following example shows.

EXAMPLE 1. Let X and Y be both the set of real numbers. Let τ be the usual topology for X and σ the cocountable topology for Y. Then the identity mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is semi-weakly continuous and not semi-continuous.

THEOREM 1. A mapping $f: X \rightarrow Y$ is s.w.c. if and only if for every open set V in $Y f^{-1}(V) \subseteq \operatorname{sInt}(f^{-1}(\operatorname{sCl}(V)))$.

PROOF. Let $x \in X$ and V an open set containing f(x). Then $x \in f^{-1}(V) \subset s \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$. Put $U = s \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$. Then U is semi-open and $f(U) \subset s\operatorname{Cl}(V)$. Conversely, let V be any open set of Y and $x \in f^{-1}(V)$. Then there exists a semi-open set U in X such that $x \in U$ and $f(U) \subset s\operatorname{Cl}(V)$. Therefore, we have $x \in U \subset f^{-1}(s\operatorname{Cl}(V))$ and hence $x \in s \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$. This proves that $f^{-1}(V) \subset s \operatorname{Int}(f^{-1}(s\operatorname{Cl}(V)))$.

THEOREM 2. Let $f: X \to Y$ be a mapping and $g: X \to X \times Y$ be the graph mapping of f, given by g(x) = (x, f(x)) for every point $x \in X$. If g is s.w.c., then f is s.w.c.

PROOF. Let $x \in X$ and V be any open set containing f(x). Then $X \times V$ is an open set in $X \times Y$ containing g(x). Since g is s.w.c., there exists a semi-open set U containing x such that $g(U) \subseteq x \operatorname{Cl}(X \times V)$. It follows from Lemma 4 of [5] that $x \operatorname{Cl}(X \times V) \subseteq X \times x \operatorname{Cl}(V)$. Since g is the graph mapping of f, we have $f(U) \subseteq x \operatorname{Cl}(V)$. This shows that f is s.w.c.

THEOREM 3. If $f : X \rightarrow Y$ is a s.w.c. mapping and Y is Hausdorff, then the graph G(f) is a semi-closed set of $X \times Y$.

PROOF. Let $(x, y) \notin G(f)$. Then, we have $y \neq f(x)$. Since Y is Hausdorff, there exist disjoint open sets W and V such that $f(x) \in W$ and $y \in V$. Since f is s.w.c., there exists a semi-open set U containing x such that $f(U) \subset gCl(W)$. Since W and V are disjoint, we have $V \cap gCl(W) = \phi$ and hence $V \cap f(U) = \phi$. This shows that $(U \times V) \cap G(f) = \phi$. It follows from Theorems 2 and 11 in [2] that G(f) is semi-closed.

DEFINITION 2. By a s.w.c. retraction, we mean a s.w.c. mapping $f: X \rightarrow A$, where $A \subseteq X$ and f|A is the identity mapping on A.

THEOREM 4. Let $A \subseteq X$ and $f : X \rightarrow Y$ be a s.w.c. retraction of X onto A. If X is a Hausdorff space, then A is a semi-closed set in X.

124

PROOF. Suppose that A is not semi-closed. Then there exists a point $x \in sCl(A) - A$. Since f is s.w.c. retraction, we have $f(x) \neq x$. Since X is Hausdorff, there exist disjoint open sets U and V such that $x \in U$ and $f(x) \in V$. Thus we get $U \cap sCl(V) = \phi$. Now, let W be any semi-open set in X containing x. Then $U \cap W$ is a semi-open set containing x and hence $(U \cap W) \cap A \neq \phi$ because $x \in sCl(A)$. Let $y \in (U \cap W) \cap A$. Since $y \in A$, $f(y) = y \in U$ and hence $f(y) \in sCl(V)$. This gives that $f(W) \not\subset sCl(V)$. This contradicts that f is s.w.c. Hence A is semi-closed in X.

4. S-connected space

DEFINITION 3. A space X is said to be S-connected [7] if X can not be written as the disjoint union of two non-empty semi-open sets.

Every S-connected space is connected but the converse is not true as the following example shows.

EXAMPLE 2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a connected space. However, it is not S-connected.

It is shown in Theorem 4 of [3] (resp. Theorem 3 of [4]) that connectedness is invariant under almost continuous (resp. weakly continuous) surjections. It is also known that S-connectedness is invariant under semi-continuous surjections. However, we have the following.

THEOREM 5. If X is an S-connected space and $f: X \rightarrow Y$ is a s.w.e. surjection, then Y is connected.

PROOF. Suppose that Y is not connected. Then there exist non-empty open sets V_1 and V_2 of Y such that $V_1 \cap V_2 = \phi$ and $V_1 \cup V_2 = Y$. Hence, we have $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$, $f^{-1}(V_1) \cup f^{-1}(V_2) = X$ and $f^{-1}(V_1) \neq \phi$ because f is surjective. By Theorem 1, we have

 $f^{-1}(V_i) \subset sInt(f^{-1}(sCl(V_i))), i=1, 2,$

Since V_i is open and closed, we obtain $f^{-1}(V_i) \subset sInt(f^{-1}(V_i))$ and hence $f^{-1}(V_i)$ is semi-open for i=1, 2. This implies that X is not S-connected. Therefore Y is connected.

THEOREM 6. If X is an S-connected space and $f: X \rightarrow Y$ is a semi-continuous mapping with the closed graph, then f is constant. PROOF. Suppose that f is not constant. There exist distinct points x_1 , x_2 in X such that $f(x_1) \neq f(x_2)$. Since the graph G(f) is closed and $(x_1, f(x_2)) \notin G(f)$, there exist open sets U and V containing x_1 and $f(x_2)$, respectively, such that $f(U) \cap V = \phi$. Since f is semi-continous, U and $f^{-1}(V)$ are disjoint non-empty semi-open sets. It follows from Theorem 17 of [7] that X is not S-connected. Therefore, f is constant.

COROLLARY (Thompson [7]). Let X be irreducible. If $f: X \rightarrow Y$ is a continuous mapping with the closed graph, then f is constant.

PROOF. Since every continuous mapping is semi-continuous, this is an immediate consequence of Theorem 17 in [7] and Theorem 6.

Yatsushiro College of Technology	Faculty of Science
Yatsushiro, Kumamoto 866 Japan	Garyounis University
	Benghazi, Libya

REFERENCES

- N. Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [2] _____, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [3] P.E. Long and D.A. Carnahan, Comparing almost continuous functions, Proc. Amer. Math. Soc., 38(1973), 413-418.
- [4] T. Noiri, On weakly continuous mappings, Proc. Amer. Math. Soc., 46(1974), 120-124.
- [5] _____, A note on pregular spaces, Glasnik Mat., 13(33) (1978), 107-110.
- [6] M.K. Singal and A.R. Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63-73.
- [7] T. Thompson, Characterizations of irreducible spaces, Kyungpook Math. J., 21(1981), 191-194.

126