EXTENSIONS OF ANTI-DERIVATIONS TO MODULES OF QUOTIENTS

(Dedicate to professor Jae Kyu Lim on his sixtieth birthday)

By Seog Hoon Rim

1. Introduction

Throughout the following, R will denote an associative ring with unit element 1 and R-Mod will denote the category of all unitary left R-modules and let $w: R \longrightarrow R$ be an involution (i.e. w is an endomorphism of R whose square is identity map). Then anti-derivation with respect to w of R is a mapping $d: R \longrightarrow R$ such that d(a+b)=d(a)+d(b) and d(ab)=d(a)b+w(a)d(b)for all elements $a, b \in R$ ([3]). If w is an identify map, then d is called an (ordinary) derivation.

If M is a unitary left R-module and if d is a fixed anti-derivation (with respect to w) on R then anti-derivation on M is a mapping $\tilde{d}: M \rightarrow M$ satisfying the condition that $\tilde{d}(m+n) = \tilde{d}(m) + \tilde{d}(n)$ and $\tilde{d}(rm) = d(a)m + w(a)\tilde{d}(m)$ for all element m, $n \in M$ and $r \in R$.

The purpose of the present paper is to show that any anti-derivation w.r. to w on a left R-module M can be extended to an anti-derivation w.r. to w on the module of quotients of M with respect any torsion theory on R-Mod relative to which M is torsionfree, using the method of J. Golan's method. In particular any anti-derivation w.r. to w on the ring R can be extended to an anti-derivation w.r. to w on the ring of quotients of R, uniquely.

2. Some preliminaries

Notation and terminanology concerning (hereditary) torsion theories on *R*-Mod will follow [1]. In particular, if τ is a torsion theory on *R*-Mod then a left ideal *H* of *R* is said to be τ -dense ideal in *R* if and only if the cyclic left *R*-module *R/H* is τ -torsion. If *M* is a left *R*-module then we denote $T_{\mathfrak{g}}(M)$ the unique largest submodule of *M* which is τ -torsion. If *E(M)* is the injective hull of a left *R*-module *M* then we define the submodule $E_{\mathfrak{g}}(M)$ of *E(M)* by $E_{\mathfrak{g}}(M)/M = T_{\mathfrak{g}}((E)/M)$. The module of quotients of *M* with respect to τ , denoted by $Q_{\mathfrak{g}}(M)$, is then defined to be $E_{\mathfrak{g}}(M/T_{\mathfrak{g}}(M))$. Note that, in particular, if *M* is τ -torsionfree then $Q_{\mathfrak{g}}(M) = E_{\mathfrak{g}}(M)$, and this is a left *R*-module containing *M* as a large submodule. In general, we have a canonical *R*-homomorphism from

M to $Q_{\tau}(M)$ obtained by composing the canonical surjection from M to $M/T_{\tau}(M)$ with the inclusion map into $Q_{\tau}(M)$.

If R_{τ} is the endomorphism ring of the left *R*-module $Q_{\tau}(_{R}R)$ then $Q_{\tau}(M)$ is canonically a left *R*-module for every left *R*-module *M* and the canonical map $R \rightarrow R_{\tau}$ is a ring homomorphism. The ring R_{τ} is called the ring of quotients or localization of *R* at τ . A torsion theory τ on *R*-Mod is said to be faithful if and only if *R*, considered as a left module over itself, is τ -torsionfree. In this case, *R* is canonically subring of R_{τ} .

Before enterning our discussion, we assume that any anti-derivations are related with a fixed involution w.

LEMMA 1. For each q in $Q_{\tau}(M)$, the map $\alpha_{H,q}: H \rightarrow Q_{\tau}(M)$ defined by $h \rightarrow \tilde{d}$ (w(h)q) - d(w(h))q is an R-module homomorphism, for every h in H.

PROOF. Trivial.

The following lemmas can be found in [1].

LEMMA 2. Let H be a τ -dense ideal in R, and let $\alpha_{H,q}$ be R-module homomorphism defined on H into $Q_{\tau}(M)$, then R/H is τ -torsion and there exist unique R-module homomorphism $\beta_{R,q}: R \rightarrow Q_{\tau}(M)$ which makes the diagram commutes.

i.e. $0 \xrightarrow{H \longrightarrow R} H \xrightarrow{R} \beta_{R,q} \downarrow \xrightarrow{\beta_{R,q}} Q_{*}(M)$

LEMMA 3. Let H and K be *t*-dense ideals of R then we have the following results.

- (1) H∩K is *z*-dense ideal.
- (2) (H:r)=(a∈R | ar∈H) is τ-dense ideal.
- (3) Homomorphic image of H is z-dense ideal.

LEMMA 4. Let H and K be τ -dense ideals of R and let $\alpha_{H,q}$: $H \rightarrow Q_{\tau}(M)$, and $\alpha_{K,q}: K \rightarrow Q_{\tau}(M)$ be defined as in the lemma 2. Then $\alpha_{H,q}$ and $\alpha_{K,q}$ define the same elements in $Q_{\tau}(M)$.

3. Main theorems

THEOREM 5. Let d be an anti-derivation on a ring R. Let τ be a torsion theory on R-Mod and let M be a τ -torsionfree left R-module on which we have defined

120

an anti-derivation \overline{d} . Then there exists an anti-derivation \overline{d} defined on $Q_z(M)$ the restriction of which to M is \overline{d} .

PROOF. If q is an element of $Q_{\tau}(M)$ then there exists a τ -dense left ideal H of R satisfying $Hq \leq M$. Define a function $a_{H,q}: H \rightarrow Q_{\tau}(M)$ by setting $h \rightarrow \tilde{d}(w(h))q) - d(w(h))q$. By the lemma 1, $a_{H,q}$ is an R-homomorphism of left R-modules. Therefore by the lemma 2, we see that $a_{H,q}$ extends uniquely to R-homomorphism from $_{R}R$ to $Q_{\tau}(M)$ and so there exists unique element \tilde{q} of $Q_{\tau}(M)$ satisfying the condition that $a_{H,q} = h\tilde{q}$ for all h in H. We now define a function $\tilde{d}: Q_{\tau}(M) \rightarrow Q_{\tau}(M)$ by setting $\tilde{d}(q) = \tilde{q}$. This function is welldefined. Indeed, suppose that q is an element of $Q_{\tau}(M)$ and let H and K be τ -dense left ideals of R satisfying $Hq \leq M$ and $Kq \leq M$. Then $(H \cap K)q \leq M$ and $H \cap K$ is also τ -dense ideal in R. By the lemma 4, $a_{H,q}$ and $a_{K,q}$ define the same element \tilde{q} .

Now we claim such \overline{d} is an anti-derivation on $Q_{\tau}(M)$ Indeed, let p and q be elements of $Q_{\tau}(M)$ and let r be an element of R. If H and J are τ -dense left ideals of R satisfying $Hp \leq M$ and $Jq \leq M$, then $K = H \cap J$ is τ -dense ideal of Rsuch that $Kp \leq M$ and $Kq \leq M$. Moreover, for every element k of K we have

$$\begin{aligned} (k)a_{K, p+q} &= \vec{d} (w(k)(p+q)) - d(w(k))(p+q) \\ &= \vec{d} (w(k)p) + \vec{d} (w(k)q) - d(w(k))p - d(w(k))q \\ &= (k) (a_{K,p} + a_{K,q}) \end{aligned}$$

and by the lemma 2, the uniqueness of extension, this implies that

 $\overline{d}(p+q) = \overline{d}(p) + \overline{d}(q).$

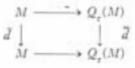
Similarly there exists a τ -dense left ideal H of R satisfying the condition that $Hrq \leq M$ and $Hq \leq M$. Then by the lemma 3, (H:r) and $K=H \cap (H:r)$ are τ -dense left ideals of R, we therefore have a R-homomorphism from $_{R}K$ to $_{R}R$ given by $k \mapsto (k)a_{K,rg} - (kw(r))a_{K,g'}$. For every element k of K, we see that

$$\begin{split} (k)a_{K,rq} &- (kw(r))a_{K,q} = \vec{d} (w(kr)q) - d(w(k))rq - \vec{d} (w(k)r)q + d(w(k)r)q \\ &= -d(w(k))rq - d(w(k))rq + w^2(k)d(r)q = kd(r)q \end{split}$$

And by the uniqueness of the extension, this equation implies that $\overline{d}(rq) = w(r)\overline{d}(q) = d(r)q$, i.e. $\overline{d}(rq) = d(r)q + w(r)\overline{d}(q)$. Thus \overline{d} is an anti-derivation on $Q_{\omega}(M)$.

Note that \overline{d} restricts to \overline{d} on $Q_{\tau}(M)$. Indeed *m* is an element of *M* then we can take *R* as a τ -dense ideal in *R* such that $Rm \leq M$ and for any element *r* of *R* we have $\overline{d}(rm) - d(r)m = d(r)m + w(r)\overline{d}(m) = w(r)\overline{d}(m)$. By the definition of \overline{d} , $\overline{d}(rm) - d(r)m = w(r)\overline{d}(m)$ i.e. $\overline{d}(m) = \overline{d}(m)$.

COROLLARY 6. Let d be an anti-derivation on a ring R and let \tilde{d} be an antiderivation defined on a left R-module M. Suppose that τ is a torsion theory on R-Mod satisfying the condition that $\tilde{d}(T_{\tau}(M)) \leq T_{\tau}(M)$. Then there exists an anti-derivation \tilde{d} on $Q_{\tau}(M)$ in such a manner that the diagram



commutes.

PROOF. Define d on $M/T_{\mathfrak{r}}(M)$ by denotting, $d : m+T_{\mathfrak{r}}(M) \mapsto \tilde{d}(m)+T_{\mathfrak{r}}(M)$, by the condition $\tilde{d}(T_{\mathfrak{r}}(M)) \leq T_{\mathfrak{r}}(M)$, such a map is welldefined. And $M/T_{\mathfrak{r}}(M)$ is τ -torsionfree left *R*-module by the theorem 5, this anti-derivation d can be extended to an anti-derivation \tilde{d} on $Q_{\mathfrak{r}}(M)$ making the diagram commutes.

CORROLLARY 7. Let \equiv be a faithful torsion theory on R-Mod and d be an anti-derivation on a ring R. Then there exists unique anti-derivation \overline{d} defined on R_e the restriction of which to R is d.

PROOF. The existension of anti-derivation \overline{d} follows from the theorem 5 and the fact that $Q_{\tau}(R)$ and R_{τ} are isomorphic, as left *R*-modules. To show the uniqueness, assume that d^* and f^* be anti-derivations defined on R_{τ} , and $d^* = f^*$ on *R* i.e. $(d^* - f^*)(h) = 0$ for all $h \in R$ For all non-zero element *q* of R_{τ} there exists a τ -dense left ideal *H* of *R* satisfying the condition that $Hq \leq R$ and so for any element *h* in *H* we have $0 = (d^* - f^*)(hq) = w(h)(d^* - f^*)(q)$, thus we have $w(H)(d^* - f^*)(q) = 0$. Since w(H) is τ -dense left ideals of *R*, this implies that $d^*(q) = f^*(q)$ for all $q \in R$.

Kyungpook University

REFERENCES

- [1] J. Golan, Localization of noncomutative rings, Marcel Dekker, New York, 1975.
- [2] _____, Extensions of derivations of modules of quotients, Comm. in Algebra 9(3), 1981.
- [3] W. Greub, Linear algebra, Springer-Verlag, New York Berlin 1975.

122