A NOTE ON CONTINUATION AND BOUNDEDNESS OF SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS

By H. El-Owaidy & A.S. Zagrout*

This note is concerned with some properties of the solutions of the perturbed nonlinear second order differential equation

$$x^{*} + f(x(t))g(x'(t)) = h(t, x(t), x'(t))', = \frac{d}{dt}$$
(1)

where $f: R \to R$, $g: R \to R_{\downarrow}$, $h: I \times R^2 \to R$ are continuous functions and $R = (-\infty, \infty)$, $R = (0, \infty), I = [0, \infty).$

We shall give sufficient conditions for all solutions of (1) to be continuable to the right of their initial value $t_0 \in I$, and for all solutions x(t) of (1) together with derivative x'(t) to be bounded on I.

DEFINITIONS. (i) By continuable we mean a solution which is defined on a half-line $[t_{\alpha}, \infty)$.

(ii) A solution x(t) of (1) is said to be oscillatory if it has no last zero, otherwise it is nonoscillatory.

Let:

$$F(x) = \int_0^x f(x) \, dx \ge 0 \text{ for all } x \in \mathbb{R}, \tag{2}$$

$$G(y) = \int_0^y \left[s/g(s) \right] ds, \ g(0) \neq 0, \lim_{\|y\| \to \infty} G(y) = \infty,$$
(3)

where y(t) = x'(t)

Our main assumptions are:

(i) There exists a continuous function $u: I \rightarrow R$ such that $|h(t, x, x')| \leq u(t)$,

(ii) There exists nonnegative constant M such that

 $|y|/g(y) \le MG(y)$ for $|y| \ge 1$. (4)

THEOREM 1. Under the conditions stated above, any solution x(t) of equation (1) is continuable to the right of its initial t-value t_{α} .

PROOF. Let x(t) be a solution of equation (1) with initial t-value $t_0 \in I$. Suppose, on the contrary, that x(t) can not be continued past the finite point $T > t_0$, $T \in I$. It sufficies to show that x(t) remains bounded as t approaches T from the left.

Let: V(t, x, x') = G(y) + F(x) + C where C is a nonnegative constant. Then

$$V'(t, x, x') = \frac{yh}{g(y)} \le u[N + MG(y)]$$

Integrating both sides from t_0 to t and noting that u(t) is bounded on $[t_0, T]$ we have

$$v(t) \leq C_1 + M \int_{t_0}^t u(s) G(y(s)) ds$$

Thus

$$G(y(t)) \le V < C_1 + \int_{t_0}^t u(s) MG(y(s)) ds.$$

Using Gronwall-Bellman inequality [3] there is a constant C_2 depending on u(t) but not on G(y) such that for all t $[t_a, T)$

$$G(y(t)) \leq C_{2} < \infty$$

Thus G(y(t)) remains bounded as $t \to T$ from the left and so y(t) = x'(t) remains bounded as $t \to T$ from the left. Consequently x(t) is also bounded as $t \to T$. Thus we have a contradiction to our assumption that x(t) is not continued past (finite) point T. This completes the proof.

COUNTEREXAMPLE TO THEOREM 1. Let $f \equiv 0$, $h(t, x, y) = 2\phi(x)^3$ with $\phi(x) = \min(0, x)$ and $t_0 = 0$. Then x = -1/(1-t) satisfies (1) on [0, 1). One may take $u \equiv 0$.

In this section we will prove a boundedness theorem for solution x(t) of equation (1) and its derivative x'(t) by using a modification of the technique of the previous section. In addition to the given conditions we suppose that:

(i)
$$\lim_{|x| \to \infty} F(x) = \infty,$$
 (5)

(ii)
$$y^2/g(y) \le MG(y) + N_i$$
, (6)

$$|y|/g(y) \leq MG(y) + N_s$$
, for all $y \in \mathbb{R}$.

These follow from condition (3).

(iii) There are continuous functions $r_i: I \rightarrow I$, i=1, 2 such that:

$$|h(t, x, y)| \le r_1(t) + r_2(t)|y|$$
 (7)
for all $(t, x, y) \in I \times R^2$.

THEOREM 2. Let assumptions (2), (3), (6), (7) be hold. Let $r_1 \& r_2$ are integrable on I. Then for each solution x(t) of equation (1), with initial t-value $t_0 \in I$, x'(t) is bounded on $[t_0, \infty)$.

114

If in addition condition (5) holds then x(t) is bounded also on $[t_0, \infty)$.

PROOF. Let x(t) be a solution of equation (1) with initial t-value t_0^{*} , $t_0 \equiv I$. Multiplying (1) by x'(t)/g(x(t)) and integrating on $[t_0^{*}, t] \subset [t_0^{*}, T)$, we get:

$$G(y(t)) - G(y(t_0)) + F(x(t)) - F(x(t_0)) \\ \leq \int_{t_0}^t h(s, x(s), y(s)) y(s)/g(y(s)) ds,$$
(8)

Using (6) & (7), inequality (8) can be written in the form

$$\begin{aligned} |G(y(t)) - G(y(t_0)) + F(x(t)) - F(x(t_0))| &\leq \int_{t_0}^t \left| \left[r_1(s) + r_2(s)y(s) \right] \frac{y(s)}{g(s)} \right| ds, \\ &\leq \int_{t_0}^t r_1(M \ G(y) + N_1) + r_2(M \ g(y) + N_2) \ ds, \\ &\leq M \int_{t_0}^t \left[r_1(s) + r_2(s) \right] \ G(y) \ ds + \int_{t_0}^t (r_1(s)N_1 + r_2(s)N_2) \ ds, \\ &\leq M \int_{t_0}^t (r_1(s) + r_2(s)) \ G(y) \ ds + m(t), \end{aligned}$$
(9)

where

$$m(t) = \int_{t_0}^t [N_1 r_1(s) + N_2 r_2(s)] ds.$$

Furthermore

$$m(t) \leq \int_{t_4}^{\infty} (N_1 r_1(s) + N_2 r_2(s)) ds = m_0 < \infty,$$
 (10)

Since $F(x) \to \infty$ as $|x| \to \infty$, F(x) is bounded from below, say $F(x) \ge -K$. Let

$$V(t) = G(y(t)) + F(x(t)) + K,$$
 (11)

Using (11), inequality (9) takes the form

$$V(t) \le V(t_0) + m(t) + M \int_{t_0}^t [r_1(s) + r_2(s)] G(y(s)) ds.$$
(12)

Hence

$$V(t) \le V(t_0) + m_0 + M \int_{t_0}^t [r_1(s) + r_2(s)] V(s) \, \mathrm{d}s,$$

by using (11) again.

By using Gronwall-Bellman inequality there is, then, a constant C, depending on $r_1(t) \& r_2(t)$ but not on V(t) such that:

$$V(t) \leq (V(t_0) + m_0) C,$$

i.e. $G(y(t)) + F(x) \leq [G(y(t_0) + F(x(t_0)) + m_0] C.$
It follow that $F(x(t))$ is bounded for $t \geq t_0$.

The conclusion of the theorem follows from (5)

115

COROLLARY. If in addition to the hypotheses of theorem 2 and $G(y) \rightarrow \infty$ as $|y| \rightarrow \infty$, then all solutions x(t) and the derivatives x'(t) are bounded.

PROOF. From the proof of theorem 2 we obtain

$$V(t) \leq (V(t_p) + m_p) C < \infty$$
.

The boundedness of y(t) then follows from the boundedness of G(y(t)) on $[t_0, T)$. An integration shows that x(t) is also bounded on $[t_0, T)$. This completes the proof of the corollary.

THEOREM 3. If
$$xf(x) \ge 0$$
, for $x \ne 0$, $f'(x) \ge 0$,
 $|h(t, x, x')| \le u(t)$, $\lim_{t \to \infty} u(t) = 0$, $u \in L'(t_0, \infty)$, (14)

$$g(y) \ge C > 0$$
, (15)

and x(t) is a bounded nonoscillatory solution of (1), then $\lim |x(t)|=0$.

PROOF. It will be convenient to consider the equivalent system

$$\begin{aligned} x' = y + \int_{t_0}^{t} h(s, x(s), y(s)) \, ds, \\ y' = -f(x) \, g(y). \end{aligned}$$
 (16)

Let x(t) be a nonoscillatory solution of (1). Without loss of generality, we can assume that $x(t) \neq 0$ on $[t_0, \infty)$. Let x(t) > 0 for $t \geq t_1 \geq t_0$. A similar arguments hold if x(t) < 0 for $t \geq t_1 > t_0$. On the contrary, suppose that $\lim_{t \to \infty} \inf x(t) \neq 0$. Then there exist positive numbers *m* and $t_2 \geq t_1$ such that:

$$m \leq x(t)$$
 for $t \geq t_{2}$. (17)

This condition together with (14) implies that

$$f(x(t)) \ge A > 0$$
 for $t \ge t_s$.

Thus from (16), by integration, we have

$$y(t) - y \ t_2 = -\int_{t_2}^{t} f(x(s)) \ g(y(s)) \ ds \leq -AC(t - t_2), \tag{18}$$

Letting $t \rightarrow \infty$ in (18) we obtain

$$\lim_{t\to\infty} y(t) = -\infty,$$

Thus, for $t \ge t_3 \ge t_2$ for some t_3 sufficiently large

$$r'(t) < 0$$
 for $t \ge t_{a^+}$

Then from (16), by integration, it follows that

$$x(t) \rightarrow -\infty$$
 as $t \rightarrow \infty$.

This, however, is a contradiction and hence

$$\lim_{t \to 0} \inf x(t) = 0$$

This completes the proof of the theorem.

REMARKS. (1) It should be noted that x' is not necessarily bounded on $[t_{ct}, \infty)$; this follows from the fact that the equation

$$x' + e^{2t}x = x'$$

has the bounded solution $x(t) = \sin(e^t)$ with an unbounded derivative.

(2) If, instead of the assumption (iii) before theorem 2, one assumes $|\lambda(t, x, y)| \leq r_1(t) + r_2(t) |x|$ with r_1 , r_2 integrable on *I*, the conclusion of theorem 2 is false, as example

$$x'' + \frac{x}{1+x^2} = \frac{1}{1+t^2} x$$

which has x=t as a solution.

Faculty of Science Al-Azhar University, Nasr-City, Cairo, Egypt.

REFERENCES

- H. A. Antosiewicz, Stable systems of differential equations with integrable perturbation term, J. London Math. Soc. 31(1956), 208-212.
- H. El-Owaidy, On oscillations of second order differential equation, Kyungpook Math. J. Korea, V.21(1981), 117-121.
- [3] W. Schmaedeke and G. Sell, The Gronwall inequality for modified stieltjes integrals, Proc. Amer. Math. Soc. 19(1968), 1217-1222.