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HYPERGEOMETRIC FUNCTIONS
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1. Introduction

In recent years there has developed a growing interest in the study of
approximation theory as applied to certain of the Special Functions of Mathe-
matical Physics, see Luke [4]. Of special interest is the determination of
upper and lower bound estimates for such functions whenever these can be
found. The purpose of this work is to find necessary and sufficient conditions
under which the Maclaurin series expansion for any of the hypergeometric
functions of one variable is an upper and/or lower bound. The starting point
of this investigation is an inequality of Bernoulli which was extended by
Gerber [2] and an elementary proof of which was obtained by Ross [10],
namely
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n=0,1,2, -+ (1)
where (a)r:P (a+7)/I(a) is the Pochhammer symbol and the term in square

brackets is zero for %0 and for »>0, if and only if, @ is one of the integers
0,1,2...n. Note that the above result remains valid even if the series is not
convergent. The current analysis is particularly important for it leads in quite
a simple way to the development of enveloping series for some of the special
functions of mathematical phyvsics, see P6lya and Szegt [9], to an estimation
of their smallest zeros, see Whittaker and Watson [13] as well as the book of
Luke [6].
In this paper, it is found convenient to define the generalized and lower
order hypergeometric functions by the series
P ey, iy i = B B O

where the a o i=1,2,-,p and the bj, J=1,2,...q are regarded as parameters in

(2)

the numerator and denominator respectively and z is the independent variable.
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Here the Pochhammer symbol (c), stands for the product of » terms so that
(c),=¢c(c+1) (¢+2)...(c+v—1) when v=1,2,3,... and () =L

In case p and/or ¢=0 the parameters in the numerator and/or denominator are

simply omitted. Since the series referred to in (2) is often cumbersome to

write down in more complicated formulae the following alternative notations,
due to Slater [12] will be used, namely

o e ((“p))vxu
D=, [a) 5 () “'“:ﬁo_“W

whenever the series is meaningful and converges for some x70. Here (c)

k
denotes the sequence of parameters €13€p-s ¢, and ((¢,))  denotes I (c;),.
4

It is assumed throughout the paper that, if any one of the bj’s is a negative
integer or zero then the series terminates at a stage before the zero divisor
appears. Thus, if -N is the largest of the non-positive integers in the set
bysbyy...r b A then at least one of the parameters @y, ..., @, MUSt ke a non-positive
integer greater than or equal to -N. Note that the convention is adopted that
the series terminates at »=M if —a,=—b,=M and M is the smallest positive

integer with this property. It follows that the Mt partial sum of the series
Fq{.z) can ke written in the form

5 (=M),((a,)) 2"
v=0 (=M),((5)) !
Apart from the above possibility the series is convergent
(a) for all complex z, when p<Zg,
(b) for |z|<1, when p—q -1,

(c) for z=1 provided that b Z a,>0 when p=q+1,
=14 i)

(d) for x=—1 provided that “lb —.Ela .>—1 when p=g—1,
= =

and (e) =0 whenever p>q-+1. ’

On the other hand, it is easy to show that for all other values of z, # and ¢
the series in (2) is divergent, unless it terminates. Throughout this paper the
convention will be adopted that no [;J. is equal to a, since this merely has the
effect of reducing the order of the hypergeometric function. The situation
where one or more of the parameters a; is zero will be ignored as well for

then the hypergeometric series contains only one term.
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2. The main theorems

THEOREM A. Let la;} and {bj} be two sequences, possibly null sequences, of
real numbers then
re,) . iy
F i () z]= q 1ar—1,.  be—ar—1l .
Falle)s iA1=y S a=a o la,_)s

I g—1*
(kal) s xt]dt (3)
provided that bg>ap>0.

This is easily proved by expanding the hypergeometric function in the
integrand in powers of x and integrating the uniformly convergent series
term-by-term, see Slater [12].

To begin, it is important to look at the case where la;} and {bj} are null
sequences,

LEMMA. The exponential function exEUFOL'— i — 3 x] satisfies
n41 7 ¥
E _ [F[=s=—s#]=) <% 120, R,
W=D 5% A ] ,Eg ;,! =0, for all z€ (4)
n b
PROOF. Let Y (r)=l—¢ * X £, then Y,(0)=0
=0 V!
and L d (Y (#)] _”v 2" >0, for all 2=R
e - - W =g —_— 4 .
Gl dy R PIICES S *

See for comparison a similar inequality given in Pdlya and Szegd [9].

THEOREM 1. Let {a )} and fbj} be two, possibly null, sequences of non-negative

real numbers then

((a)) 2"

Z"UE e 5 () s 21— X 1=0, (3)

v=0 (B, !
for all xR, and n=1,2,3,....

PROOF. The preceeding Lemma shows that (5) is valid for p=0. When p+0
and ((ap)) =0 inequality (3) is an identity and there is no more to say. On
the other hand, when p==0 and the two sequences are such that b, >a. >0 for
each i=1,2,...,p then it is admissible to apply the representation Theorem A,
p-times to the inequality (4) of the Lemma so obtaining the result (5).

The next step is to show that the inequality restrictions on the parameters
a; and bj can te eased. This can Le achieved by noting that there are no such
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restrictions for a GFﬂ(.r) and then to use an inductive proof based on the above
result. To begin, suppose that inequality in (5) is valid with a; bj>0 for each
mln (%) with m=0,1,...,p~1. Then by applving the relation (3) of Theorem
A, it i1s seen that the function ﬁFﬁ(.z') satisfies (5) whenever b_o>ap and where
ap>0.

Now it is well known that pr‘s satisfy a simple three-term recurrence relation

e (@) o
apqu[(ap) 3 (bq) s .I'} T T(b‘:_)-)}?— qu[(l_dp) » (1 an) 3 -'C]
=apqu£(aﬁ_l), I~.‘-ap; (bq) s x]

See Luke [4, pl60]. This can be used to infer that their remainders satisfy a
similar type of relation. In particular, on eguating coefficieats of z", it is
found that

= (@)Nz  (a))z = (1+a))z

P TENT T (), v=n (78051

os b &
=, & _Ota) (g, ))r (6)
Py=n+1 (bp),((bp_f)),‘v“.
for n=0,1,2,... and provided that each series is meaningful (by which is meant
that no b, is a negative integer and that the series converges for some 270,

or else it terminates or terminated).
Now from (5) and the inductive hypothesis it can be deduced that

n+1 ? ((ap))._,xv ~0
e yF L ((bp))v',! =

and

((ap))l Tg+2°‘° ((l*ap))vxy
@), " = (TE) 1

=0, n=1,2,3,...

for bp‘}ap where ap>0. Hence it follows, after multiplying (6) by 277! that

(1+ay) ((a,_))), 2"

L § — >0, for all »=1,2,3,...

v=n+1 7(5;) :(7(5;_ ) !
Hence, on using (6) a number of times it appears that the inequality restriction
b,>a, is no longer needed to establish (5) as long as each a; and b; is non-
negative.
THEOREM 2. Let la;} and {bj} be two, with la;} possibly null, sequences of
non-negative real numbers then, for p<q.
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it ) ) 2 ((a,)),z"
2 F,(e,) () -xl—”gium]_/_ﬂ,

for all xR, and n=1,2,3, ...

PROOF. This is based on a repeated application of a principle of confluence
as applied to the particular hypergeometric function pr(x) discussed in the
previous theorem, namely

lim Fl(a, ), a,i ()3 ——1=, [Fl(a, )i@);z]

a,—-oo a

for p=1,2,...,¢ and all z=R, see Luke [4, pl80].
The next step is to look at theorems which apply in case p>q.

THEOREM 3. Let la;] and {bj] be two, with [bj.} possibly null, sequences with
a, bj>0 Jor i, j=1,2,....p, apHER and —1<a<1, then

@) . 0 Fra), a. ;6 ;- 5 @) >0, )

217 n+1 p+179- %7 Gpra 2 9 P BT S ((6,)),»!
Jor #=1,2.3,...

PROOF. From the enveloping property of the Binomial expansion (1) it
follows that

¥
atlr @ B o TS
(ap+1)n+1x ti D[ap-t»l i i 2] u":n*!—

20!

for z<{1 and any ap+1ER' On applying the integral transformation referred to
as eguation (3) of Theorem A. p-times in succession and then the repeated
application of (6) a suitable number of times the inequality in (7) is proven.
The further restriction on z arises from a convergence condition which has to

be placed on the integrals in question.

THEOREM 4. Let {a;) and {6 j} be rwo, possibly null, sequences of real numbers,

then
((a,)) nt1- . 7 ((a )),-’Iv
2 'nt1 F ] $40) 5 21— 3 V.,
Gy, ~ #a@W )i @ =

for n=(m—+1), (m+2),..., where m is the smallest positive integer for which each
term of the sequences a;+m+1, bj-!-m--f-l is positive and bﬁ&O, =15 =2 o @hid
(i) for all real z, when p<gq

(ii) for —1<a<1 when p=q-+1.
(iii) for all = if p>q+1 and/or the series terminates since then the term in the
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large squared brackets is identically zero.

In case p=q+1 with —1<a<1 the Theorem may apply with a smaller value of
m if there exists an m=DM which is such that each term in the sequence (b j—E-M' +

1} is positive and all but one rerm in the sequence {“;' +M4-1} is positive.

PROOF. The case when a; and b}. are all positive is contained in the earlier
part of this paper. Hence, it is sufficient to assume that either one or more
of the a’s or the bj’s is negative. Clearly it is always possible to choose a
positive integer m such that all memkters of the sequences & Ametl and a,+m+1
are positive. In that case Theorems can ke used to show that

((a,+m+1)) _— _
2 s S Lo . e .
((bq—.nz+l)):+1 z" F e, tm1) 5 (b +m+1) 5 2]

S ((a +m+1)), o 120 ©)
=0 ((5 —E—m—l)) vl
under the conditions given in the statement of the Theorem.

Now on applying the transformation

((a,+m)), o o
((b +”Z)) f q[(aﬁ+mml) . (bg+m L 1) 3 t]dt

:qu[(apfm) : (bq+m) sx]—1
to the inequality (9), (m-+1) times the result follows.
The second part of the Theorem is an immediate consequence of Theorem 3.

It is worth noting that Theorem 4 cannot, in general, ke strengthen in the
sense that (8) does not always remain true for values of n<<m. This is easily
proved by looking at a particular example. Thus

g Sy 32° 3x
ZFI( 1.5,1; =3.5;2)= l'J-,? R T 35 35 TT-F for |z|<1

and, if the theorem were applicable for 2=2, this would imply that
£>—3i4+ 32° for some z in 0<z<1
/=3 T
a result which is false when z=0.2,
3. Examples
The theorems in the previous section may be used to verify the one-sided
approximations to Bessel functions J () and to Jacobi polynomials Pn(a' m(z)
as referred to by Askey [1]. For, since

a
Ja(.r)z%-z_l:)l—)uf‘l[— ;a+13 —2/4], for a>—1 and 20,
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a simple application of Theorem 2 implies that

ntl x (—1)"(x/2)>°
D™ @)= BT FAT |20 for a>—1, 220

with #=1,2,3, ... Observe that (z/2)* and J (z) are underlined for z=0 if a<0.

(a-+1)
Rl mtatftlsatl; 4 (1-2)]

(a,8) 0.y —
P " {2)= a 2

for a, 8, 2R and m=0,1,2,..., an applcation of Theorem J leads to
(a+1) n (—m) (m+a+B+1) (1—z)”
‘ m Z ) - v ]ZO,
a5 . 2 (a+1) p!

for a+5>—1, a>—1, —1<z<1 and 2=1,2,3,...m.
Some interesting extensions of these inequalities are obtainable from

(_1)”+]{Pm(¢:§) (I)'_‘

identities relating to a product of hypergeometric functions. Thus it is known
that
__ (z/2)**F a+f+2 a+fil
L@@ = =D EEy 5 5
for @, 3>—1 and 2>0, see Luke [4, p314].
Hence, from Theorem 2 it follows that

i ( a+§+2 )u( a+;29+1 )u(—l)”xzerﬁ'e

¥=0 %8P (@ 140) F(B+14+v) (a+B+1) !
under the same conditions as stated above with n=1,2,3,....
Again the product of two Jacobi polynomials
(a+1),(8+1)
m! m!

sa+1;8+1, a+§+1;—x"']

(=)™ [J (2D gla)— |=o,

Pm(a, 8) (x) Pm(ﬂn a) (I) e

Fl—m, -(a+3+1), 5-(a+p+2), m+a+f+l;
a+1, f+1, a+8+1;1—-27,
for a,3,z=R and m=0,1,2,..., see Koornwinder [3]. Hence, from Theorem 3,
it is seen that
(a+1),,(8+1)
m! m!

ﬁ (—"m)v( a+'28+1 )”( a+2'8+2 )»(m—i-a—i-.@—kl)u(l—xz)”

v=0 (a+1),(8+1) (a+B+1) ! =
for a,8>—1, — V2 <2<+72 and n=1,2,3,...,m. Observe that this inequality
is false when 2=0 and 1<<z<{+/72.

-n*[p, " (z) P, (2)-
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