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Resistivity Inversion with Householder’s Transformation

Hee Joon Kim*

Abstract: A Householder’s transformation is applied to the resistivity inversion problem. The

conventional resistivity inversion method is sometimes numerically unstable in interpreting a resis-

tivity sounding data because it usually solves the normal equation derived from an observation

equation. The resistivity inversion method using Householder’s transformation solves the observation

equation directly, so that it is numerically more stable than the conventional method. A theoretical,

ill-conditioned Schlumberger sounding data was chosen to test the inversion scheme with Househol-

der’s transformation.

INTRODUCTION

Many recent papers have demonstrated the
technique of determining the plane-layered earth
by fitting model to field data. The technique
called “resistivity inversion” or “automatic inter-
pretation” uses a nonlinear least-squares method
(Inman et al., 1973; Inman, 1975; Rijo et al.,
1977; Pelton et al., 1978; Sasaki, 1981; Kim,
.1981). Principal advantages of the resistivity
inversion over the conventional curve matching
are that the inversion method requires minimal
interaction between interpretor and data, and
gives statistics in estimating the accuracy of
solutions.

The least-squares method has been widely
used in geophysical problems. The conventional
least-squares method, however, is sometimes
numerically unstable in processing a large a-
mount of data, because it usually solves the
normal equation derived from an observation
equation. The least-squares method which direc-
tly solves the observation equation is known
to be more stable than the conventional method
(e.g., Saito, 1983).

In this paper, a Householder’s orthogonal

transformation is applied to the inversion of
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resistivity sounding data. The Householder's
transformation is used to solve the observation
equation without converting it into the normal
equation. In this paper, the usefulness of the
resistivity inversion using Householder’s trans-
formation will be demonstrated by interpreting
a theoretical Schlumberger sounding data. The
theoretical data is generated by a four-layer
earth model, and it contains approximately two
percent random noise. All numerical results
shown in this paper are computed in single
precision arithmetic.

NONLINEAR LEAST-SQUARES METHOD

In this section, only a brief summary of the
least-squares inversion method is presented.
More detailed discussions regarding geoelectrical
applications have been given by Glenn et al.
(1973) and Inman (1975). A description of
the statistical estimates in geoelectrical soundings
can be found in Glenn and Ward (1976).

Linear least-squares

An observation equation for least-squares pro-
blem is expressed by

Y—AX+R, 0
where Y(y;, i=1,...,n) is the vector of obser-
ved data, A(a;;, i=1,...,n and j=1,...,m) the
nxXm matrix of coefficients or weights, X(z;,

j=1,...,m) the vector of parameters to be



218 Hee Joon Kim ‘

determined and R(r;, i=], ...,n) the vector of
residuals. The least-squares problem should be
overdetermined, i.e., n>m. The condition of
least-squares is to minimize
R'R=(Y-AX)"(Y—AX), @y
where the superscript 7 denotes transpose.
Minimizing of (2) generates the following nor-
mal equation '
(ATA)X=ATY, 3)
Since (3) is m simultaneous equations, a
least-squares solution can be obtained, for ex-
ample, by the Gaussian eliminate method. If
the problem is exactly linear, only one determi-
nation of X will be necessary. All electrical
sounding problems, however, are nonlinear and
several iterations are required to obtain a satis-
factory solution from a given initial guess.
Weighted least-squares
Thus far, it is assumed that the observed
data contains an uniform error. This may be a
rather poor assumption when one considers se-
veral data sets simultaneously. In such a case,
the weighted least-squares method should be
used, and (2) is rewritten by
R™WT™WR=min, @
where W(w,, i=1,...,n) is the weight vector.
The fraction of the standard deviation ¢; of
each data is usually used as the weight, i.e.,
w,=1/o;. 5)
In this way, very noisy data do not contribute
the same degree of influence over the inversion
as relatively noise-free data.
In practice, it is convenient to transform
variables as follows:

¥/ =y;/o;,
and
aii' =aij/a;. (6)
The variable transformation produces
Y=A'X+R, @

where R’ is the new residual vector. Thus the
weighted least-squares is reduced to a simple
least-squares with the variable transformation,

Damped least-squares

Although (3) is exceedingly fast when it
converges, it is unfortunately highly unstable
and usually diverges unless the data error is
small and the initial guess is very accurate. In
order to ensure convergence from poor initial
guesses, the normal equation (3) should be
modified as

(ATA+v ) X=ATY, (©)]
where I is the identity matrix and »? the some
positive quantity (Marquardt, 1963). This tech-
nique is known as Marquardt’s method or
damped least-squares method. If v is very
large, (8) approaches the gradient method,
which is slow but always converges. At the
other extreme, if v? is very small (8) approa-
ches (3) of Gauss-Newton step, which is very
fast but may diverge. Routines which carefully
select an appropriate value for v? at each itera-
tion in the inversion process are called ridge
regression algorithm (Marquardt, 1963). Note
that, even in the damped least-squares, all
parameter statistics to be mentioned below must
be calculated with v?=0,

Parameter statistics

Once the inversion process produces a model
which yields the best fits to the observed data,
one can obtain an estimate of data variance
from the reduced chi-square,

P=RTR/(n—m), ©)
where 7 is the number of data points, m the
number of parameters and (n—m) the degree
of freedoms. From the estimate of data variance,
the parameter covariance matrix C,(c%;, i=1,
sm and j=1,...,m) is given by

C,=x%/(ATA), 10)
An estimate for the standard deviation of each
parameter can be derived from the square root
of the corresponding diagonal element of C,.
Besides, the parameter correlation matrix C,
(¢"sj, i=1,...,m and j=1, ..., m) can be obtained
from the covariance matrix:
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" ij=¢";/ (Ciic®3) V2, - (1D

A linear relationship between two parameters
is implied by a correlation coefficient with an
absolute value near 1.0. In ‘the resistivity
inversion, a thin layer frequently produces a
correlation very close to 1.0. '

. Cholesky’s decomposition

The normal equation (3) or (8) can be solved
'by the Gaussian eliminate method. Since the
coefficient matrix ATA or (ATA+v%I) is sym-
metric and positive-definite, the solution of (3)
or (8) can be obtained by symmetric Cholesky’s
decomposition with about half efforts compared
with the Gaussian eliminate method. Details for
the Cholesky’s decomposition are given by
Martin and Wilkinson (1965).

The Cholesky’s decomposition is widely used
in the least-squares fitting. When the number
of parameters to be determined becomes large,
however, the method using the Cholesky’s
decomposition is sometimes numerically unstable.
Such an unstableness is demonstrated by solving
the following example:

"0 0.5 0.3330.25 | [2.083
0.5 0.3330.25 0.2 . 1.283 |
0.333 0.25 0.2 0.167 | X=|0.95 |
0.25 0.2 0.167 0.143 | 0.143 }
0.2 0.167 0.143 0. 125_L _0.635_
12)

An accurate procedure of least-squares should
produce X as

X=[1.0, 1.0, 1.0, 1.0]". (13)
However the Cholesky’s method gives
’_1.01097_
X| -888553 | (1
1. 25500
_. 839367 _

Although the solution (14) contains the maxi-
mum error of 25.5%, a substitution (14) into
(12) shows that (14) is accurate -in six signi-
“ficant decimal figures and all residuals are less

“tharr 107¢, -This result shows that, in the ‘case

of ill-conditioned . matrix, the Cholesky’s method
may not give the correct solution even though
the residuals are very small.

Householder’s transformation
- The Householder’s orthogonal transformation
is ﬁsu_ally used in eigenvalue problems, and it
can be also used in leasf-squares problems. The
Householder’s method usually gives more nume-
rically stable solutions than the Cholesky’s
method. The Householder's method dose not
solve the observation equation but the normal
equation (Ralston, 1965).

Let's transform the coefficient matrix and the

observed vector Y as

U U
QTA= { } , or A=Q [ } , (15)
0 0
and
QY=Z or Y=QZ, (16)
where
QTQ=1I, an

and U is the mXxm upper triangular matrix,
and O the (n—m) Xm zero matrix. Form these

the residual vector R is written by
U
R=Y-AX=Q (Z— L)} X> . 18)

Then the condition of least-squares is

=[] o

where | |2 denotes the norm of argument. Here
let’s divide Z into two parts of Z, and Z, as

Z=[(Z\|Z,)"= 21, sZm| Zmi1--,2) 7. (20)
Since

|R|*=R"R= , a9

U Z,—-UX
Z-— X= { } , 2D
0 Z,
(19) becomes
| R|2=12Z,— UX|*+ | Z,]*. (22)
Thus the condition of least-sequares becomes
| Z;~— UX|2=min, or UX=Z,. (23)

The residual of the least-squares solution X is
given by
| R|*=R"R=|Z,|?, : (24)
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and the covariance matrix is obtained from
(15) as

ATA=(UT,0)Q" =(U",0
T A— T =

=UTU. (25)
Note that the Householder’s method does not
need to know @ explicitly. A detail procedure
to compute U and Z is given by Ralston
(1965).
The least-squares solution of (12) by means
of the Householder’s method is
7. 999999
x| 1.00002 |
. 999961
_1.00003_
This solution coincides with the true solution

(26)

(13) in four significant decimal figures, and all
residuals are less than 1075, Note that the
Householder’s method requires about two times
more computations than the Cholesky’s one.

RESISTIVITY INVERSION

In this section, I present a brief summary of
the resistivity inversion with Householder's
transformation used in this paper. Since the
error in measurements of apparent resistivity
(ps) is usually a fixed percentage (2~3%) of
Pa, it is expedient to transform immediately
from p, to log (p,). The logarithmic tranforma-
tion then eliminates the requirement for a wei-
ght vector with elements inversely proportional
to the magnitude of each measurement.

A further useful result is achieved by deter-
mining logarithmic resistivity and thickness in-
stead of resistivity and thickness of each layer
in the inversion process. This parameterization
has the useful effect to exclude negative resis-
tivity and thickness completely in possible
solutions.

After transforming to logarithmic apparent
resistivities & and logarithmic parameters P,

an approximate linear expression relating in G

and P has the same form as (1), i.e.,
4G=AAP R, @n
where 4G and 4P are the changes in G and
P, respectively, R the residual vector and A4
the Jacobian matrix of derivatives with respect
to parameters, i.e.,
ogi
“op;
where P, is the initial guess. The solution of

a;;j=—

P, (28)

damped least-squares is given by (8), and itis
expressed as

(ATA+ v 1) AP=ATAG (29)
As mentioned above, (29) is solved efficiently
by the Cholesky’s decomposition, but this pro-
cedure is sometimes numerically unstable.

In order to use the Householder’s transforma-
tion, we must return to the observation equa-
tion. The least-squares problem equivalent to
(29) can be written as

e

This equation is solved by Householder’s trans-
forming [v‘}} , and its solution is usually nume-
rically more stable than the solution obtained
from the Cholesky’s method.

NUMERICAL EXPERIMENT

In this section, the method of resistivity
inversion with Householder’s transformation is
illustrated by using a theoretical Schlumberger
sounding curve. Fig. 1 shows the theoretical
Schlumberger curve and its associated four-layer
model. The theortical four-layer model is made
by modifying the model of Inman (1975, Fig.
8.

Fig. 2 shows the partial derivatives of loga-
rithmic apparent resistivities with respect to
logarithmic parameters of the four-layer model.
Since the third layer is too thin, the curves of
olnp,/8lnp, and dlnp,/olnd; are nearly similar
over the whole range. This means that the
corresponding two column vectors in A become
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Fig. 1 A theoretical Schlumberger sounding curve
and its associated four-layer model.
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Fig. 2 Partial derivatives of apparent resistivity with
respect to the parameters of four-layer model.
The parameter p, consists of P1s P25 £3, Pay
dy, dy and ds;. The solid and dashed lines
represent positive and negative values, res-
pectively.

almost linearly dependent. Hence the (ATA)-!
may be contaminated easily by round-off errors.
Moreover, the maximum value of dlnp,/dlnp, is
much smaller than that of other curves. This
means that the contribution of p, to p, is very
small. In other words, a small change of p,
leads a large change in the estimation of p,,

so that a noise involved in data significantly

Table 1 Relative errors between (ATA)~! calculated
by the Cholesky’s method and that by the
Householder’s method for a four-layer mo-
del: Ei;=(Ci;—H:;)/Hi;*x100(%), where E
is the relative error, and C and H repre-
sent the (ATA)? calculated by the Chole-
sky’s and Householder’s methods, respec-
tively.

J
12 ] s | 4]

5 |6 | 7

1 |- 0000. 0704| . 2397\—. 1205|—. 0471| . 1697| . 7210
2 . 1402| . 2086|—29. 76; .1570| . 1635] . 2669
3 -19810 .2099| .2193| .2052 .1884
4 . 0181{—4.582; . 3430] . 0687
5 . 0939 . 1827| . 3025
6 . 1365| . 2253
7 . 1837

affects the estimation of p,. As a result, the
Jacobian matrix A is an ill-conditioned matrix.
Table 1 shows the relative error matrix be-
tween (ATA)™! calculated by the Cholesky’s
method and that by the Householder’'s method
for the four-layer model. An element of the
relative error, E;;, is calculated by
Eij=(Cij—H,;;) /H;;x100(%), (3D
where C and H indicate the element of (A7A4)-!
calculated by Cholesky’s and the Householder's
Cholesky’s

method is the one which solves the normal

methods, respectively. Here the

equation derived from the observation equation
using the Cholesky’s decomposition, and the
Householder’s method is the one which directly
solves the observation equation using the House-
holder’s transformation. From this table, one
can find that the maximum relative error rea-
ches to about 30%. As mentioned above, the
Householder’s method is numerically more
stable than the Cholesky’s method.

Based on the theoretical four-layer model,
the Schlumberger sounding curve was calculated
at 22 data points, and then approximately two
percent Gaussian noise was added. This soun-

ding curve is analyzed by the resistivity inversion
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Table 2 Results of the interpretation of a data set
with .2% normal noise for a four-layer

model.
Given | Initial |[Estima- |Relative |Standard
value | guess [ted value| error [deviation
(%) (%)
p1 8 40 37.61 —1.0 0.6
o2 10 6 9.68) —3.2 8.6
P3 28 50 30.59 9.3 134.7
o4 10000 5000 13521 35.2 52.5
dy 16 200 16.34 2.1 3.6
ds 61 50, 59.48] —2.5 54.3
ds 97 150! 106.4 9.7 28.0
103 F I | I
C 16.3 75.8 182
37.6 I 9.7 l30.6| 13521 y
L BEST FIT MODEL /./
ol /
= 102 - / —
lm : _/
, - . /
S /
RN /
\ /
B .\. ./
N
10! Ll Lot gt
10! 102 103
AB/2 (m)

Fig. 3 Theoretical data, best fit curve and interpreted
four-layer model.

Table 3 Correlation matrix for the solution in Table 2.

o 2 3 I i d ‘ dz ds
o1 .o .26] .11 .01 —.41 .16] .03
P2 1.0 .87 .28 —.96] .94 .69
03 1.0 .40 —.79] .98 .94
pe Lo —.25 .36 .52
dy 1.0 —.87] —.61
d, 1.0 .87
ds 1.0

technique with Householder’s transformation.
Table 2 shows results of the resistivity inver-
sion for a given initial guess. The initial guess
was obtained from rough interpretation with
conventional curve-matching method, and it

has a 50 percent error in maximum. The final
estimated model is close to the original model
except for estimation which has a reatively
large error of about 35%. The residual variance
estimated by Eq. (9) is 1.4x10™%, which indi-
cates an estimated error of 1.2 percent in the
final fit. This value shows that the final fit is
fairly good. Fig. 3 shows the curve of final fit
and its associated best fit model. The standard
deviations given by the square roots of the
diagonal terms of the parameter covariance
matrix, Eq. (10), are also shown in Table 2.
Since a large resistivity jump exists between
third and fourth layers, the standard deviation
of p; is quite large.

Table 3 shows the correlation matrix for the
parameters of the estimated model. The correla-
tion matrix indicates a strong correlation be-
tween p; and d,. Finally, it should be noted
that a final model for the same example cannot
be obtained by the inversion method using
Cholesky’s decomposition due to round-off errors.

DISCUSSION AND CONCLUSION

The Cholesky’s decomposition is widely used
in resistivity inversion problems because of its
computational efficiency. When the number of
parameters to be determined becomes large,
however, the method using the Cholesky’s
decomposition is sometimes numerically unstable
due to round-off errors. The method using the
Householder’s orthogonal transformation, how-
ever, is numerically more stable than that using
Cholesky’s decomposition. Such a stableness was
demonstrated by solving the ill-conditioned ma-
trix (12).

The Householder's method is less efficient
than the Cholesky’s one. In the resistivity
inversion, however, the length of time for
solving an observation equation is negligibly
small compared with that for constructing it.
In other words, time consuming parts are not
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backward process but forward process. Since a
typical resistivity inversion requires several
thousand forward problem evaluations, the
length of time required to calculate one apparent
resistivity is very important. Therefore, digital
linear filter methods (Ghosh, 1971a and 1971b)
is usually applied to estimate the apparent
resistivity. In this paper, Anderson’s adaptive J,
filter (Anderson, 1979; Kim, 1985) was used to
compute the Schlumberger apparent resistivity.

It is preferable to evaluate the derivative
matrix from the analytical expression for each
derivative. Although this approach may produce
more accurate entries in A, it involves a con-
siderable increase in programming (Johansen,
1975; Kim, 1981). Rijo et al. (1977) showed
that the logarithmic transformation and parame-
terization result in a sufficient linearization of
the problem such that the derivatives may be
evaluated numerically, by taking only first
forward difference, with minimal loss in accu-
racy. In my procedure, two kinds of numerical
differences are adopted to increase accuracy
further: forward differences in early stage of
iterations and central differences in late stage.
This approach not only excludes additional
routines for evaluating the integral encountered
in the analytical derivative, but also has a
sufficient accuracy.

Using the resistivity inversion method, it is
possible to find a model that fits the data, to
measure the accuracy of the fit by indicating
relative level of noise in the data, and to pre-
dict the accuracy with which each parameter is
estimated. This is certainly an improvement
over most other methods because they are rarely
able to indicate the range of models that will
fit the data with a given degree of confidence.
It is important to note that the resistivity inver-

sion method always requires some geologic
informations: an initial guess.

Although the one-dimensional resistivity in-

version was discussed in this paper, the tech-
nique using the Householder’s transformation
can be applied to two and three-dimensional
resistivity inversions. In the two-dimensional
inversion, numerical solutions for the forward
problem are based on the finite-element method
(Sasaki, 1981),
(Smith and Vozoff, 1984), and the transmission-
surface analogy (Tripp et al., 1984). Good

the finite-difference method

initial estimates of model parameters are also
crucial for the success of two-dimensional inter-
pretation, but it is more difficult to obtain them

than in the case of one-dimensional ones.
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