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1. Introduction

The Cohomology Spectral Sequence is applied to the many respects of mathematics.
For example, it plays an essential role in Topology ([8]. [9]. [111), Sheaf ;l‘heory,
Algebraic Geometry and Algebra ([37, [4], [71 [18D).

We can see the study of spectral sequence in the many researching papers; i.e., ([2],
{31, [11], [15]), and we know that spectral sequence can be derived by means of exact
couple; i.e., ([9], [13], [14]). This dissertation is a study on cohomology spectral
sequence as a concept of the duality of spectral sequence concept defined in [13]. The fact
that cohomology spectral sequence always exists when complex and its filtration are given,
is verified in Theorem 3.4.. And again the fact that cohomology spectral sequence exists
when bicomplex and first filtration are given, is verified in Theorem 4.3..

In particular, I tried to show each concrete elements of

E#? and E3™? in Theorem 4.3.. For example, E* %=L/ M*?, Esh%= L#?/Ms"°,
where L= {a®'&K»*|§"a**=0 and J a*T 19 1= K#*11 guch that §'a®¥==§"a?*1%"1}

Mz"qz {a’b’“hq,ka’bhq‘leK?ﬂIaﬁbﬁ"lﬂ::o’ bk—lyﬂeK"Isq, b’sq"leKﬁﬂ‘I}

and so, when we want to inquire into the nature of cohomology spectral sequence, we
need Kiinneth Formula, and the content of the §2 is about the revision of Kiinneth
Formula suitable for our purpose. That is to say, in our case Kiinneth Formula develops

and leads to the final stage as follows;
EnH’(X)®H'(Y) >-—3-—~>H'(X®Y)-—-ﬁ-——»>§~+"l‘0n(f‘1"(?(). H™Y)).

Theorem 4.5. is the result of the application of Kinneth: Formula. For example, when

X and Y stand for complexes of Abelian groups with X" a free group,
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E*=H M X@H,(Y)) may appear, where E;==Ej=- =F_ is maintained.

When spectral sequence (E', d") is given and each E’ is a vector space over a field F,
Here the possibility to get cohomology spectral 'sequence has been verified in example
3.5..

In this paper we promise that Z should represent the ring of integers.

2. Kunneth Formulas

Let G and A be additive abelian groups and let Z be the ring of integers, The forsion
product Tor(G, A) of G and A is an abelian group generated by

{(<g,m,a>|m=2Z, g=G, a=A, gm=0=ma},
where each <g,m,a>> subjects to the relations

<&:1+8an ma>=<g,ma>+<gsma> if gm=0=ma (i=1,2)

<3.m,ax+a2>=<g,m,a1>+<g,m,a,> if g‘mmo‘zma‘ (‘_-_—_1'2)

<Lg,mn,a>=<gm,n,a> if gmn=0=na
<g,mm,a>=<g,mna> if gm=0=mng

€ N

Proposition 2.1. Let A; and A4, be abelian groups and let G and A be additive abelian
groups.

(i) gm=0=ma=——=><o;m,a>=0=<g,m,0>

(it) if A is torsion-free, then Tor(G, A)=0

(iii) Tor(G, A)=Tor(4, &

(iv) Tor(G, A;BA)=Tor(G, A)PTor(G, As).

Proof. (i) <g+o, ma>= <g,m,a>+<o,m,a>==d<o,m,a>=0.

Similarly,

<gm,ato>=<g,ma>+<g,mo>==y <g,m,o>=0.

(ii) By our hypotheses, for each element a(3=0)€A there is no positive integer m=Z
such that ma=0.

Hence Tor(G, A) is generated by the elements <(g,m,0> where gm=90.
But by (i) <g,m,0>>=0 and thus Tor(G,A)=0.

(iii) There exists a homomorphism
¢; Tor(G, A) ———+Tor(A, Q)
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such that ¢(<g,m,a>)=<a,m,g>.
Similarly, there exists a homomorphism

¢: Tor(A,G)———>Tor(G, 4)

such that ¢(<a,m,g>)=<g.,m,a>.
Since ¢=¢"!, we gee that ¢ is an isomorphism.
Hence Tor(G, A)=Tor(4,G).
(iv) There exists a group homomorphism ¢: Tor(G, AP A;) = —-Tor(G, A;)BTor
(G, Ag) such that o(<g,m, (a1,81)>)=(<g,m a;>, <g,m,a5>).
Clearly there exist group homomorphisms

¢'; : TOI'(G, A;)M‘—*‘*TOI’(G’ Ax@At)v
¢s: Tor(G, Ag)——-—Tor(G, 4;DA;)

such that ¢,(<g,m, a;>)=<g,m, (4 o0)>,
o L g, m, 83> ) =<g,m, (0,23) >,

respectively. Hence there exists a group homomorphism

¢: Tor(G, A)@Tor(G, As) — ——Tor(G, AiDA;) such that
¢'(<gb my, al>v <gh Mz, al>) = <gh My, (ah 0)> -+ <gﬂ’ my, (01 a’)> .

Now it is easy to see that ¢e@=identity map,
@o¢h==identity map.
Therefore, ¢ is an isomorphism and

Tor(G, AiDA;)=Tor(G, A1) DTor(G, A). /1

Let R be a ring with 1. For a complex X of right (left) R-modules

Kioveeen ___g_:-,l__, K"______‘,’z:_.__, Kt g ivanns (n=2)
with 8.08..,=0 and each X" is a right (left) R-module, we put

Ker 6,=C"(K), Imd,.,=B"(K).
Then we have

HYK)=C"(K)/B"(K).
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Theorem 2.2. (Kiinneth Formula) In our situgtion if L isa complex of left R-modules
and K a complex of right K-modules satisfying
C"(K) and B"(K) are flat modules for all x, (38),

then there is a short exact sequence of R-modules
0— 23 HNK)@uH (L) -2 H (K@sL) s 35 Tor(He(K), H(L))—0 (5)s

for each dimension .
Proof. Note that for

Ki vy g1 _Olney e O pema L
N T Y ST oS N S-SR £ T

such that each K" is a right R-module and each L" a left R-module,

1 (K®RL)"=’+¢Z’“K'®RL¢

(i) AR =%+ (— 1) kR (kRI=K®pL)

(iii) a: HHK)YQpH (L)-—sH** (K ®XyL) is defined by
a(cls(u) & cls(v)) =cls(u#Xv)},

where wC*(K), ve=C*(L), the homology class of u=cls(u)=H?*(K) and so on.
(iv) The exactness of (3%), is proved as follows;

If G is a flat right R-module and L a complex of left R-modules, then it is well-
known that

o GRH'L)=H"GRL)  (®=®s). G54
We put
C'=CY(K), D"=K"/C"=B"!(K),

where K is.a complex of right R-bimodules, then the complexes

Ci ovvennn N, SN, .5 S
D: v N ;L N L2 DN
are consisting of flat right R-modules with zero boundaries. (see(3¢)q)

Consider the exact sequence of complexes
00— Cr K——sD () (O---;C"——————oK"~——-vD"«———-—»O),

Since C is flat, the sequence of complexes
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<t

E: 0 CQOL——K@L—-DERL -0 (B= Q%)
is exact. The long exact sequence of cohomologies for £ is
s HP (D@ LYEL HNC QL) s HY (KD L)~ HY( DR L) B2, ™ (C@ L) —--+,
where €,.; and €, are connecting homororphisms. Therefore, for each nesZ
the sequence: 0——Coker €,.;——H"(KXL)—Ker €,—0 (35

is exact. Let ¢’p.;: D*"'——D* be the homomorphism induced by &%,.:.

By the definition of H*(K), we have the exact sequence
St Qe s D e s CP e (K ) e 0

(Note that D?* " 1z=B*(K)C? and C? is flat, and so is D*"1).

Since D?7! is flat, for ¢ &Z we have the exact sequence of R-bimodules.
S 0— DIQHY(L)—C*QH (L) —HNK)QHY(L)—0 (Q@=Qx).

From the long homology exact sequence for S’, we get the exact sequence
0——TorA(H(K), HY(L))-S%, D+-10H%(L) ¥ BlICrQH" (L) —HH K)YQH (L) -0

a = a l = (see (3%)4)
i

-
H?+1—1(D®L>€!j~!_;1 H*(CRL),

where Sy is the connecting homomorphisms of the exact sequence S’.(Note that Tor,®(C*,
H*(L))=0 since C? is flat.)

Take the summation over p-+g=n.
Then we have the exact sequence

0% Tor(HA(K), HY(L))S% 5D 1@H(L)Y Bl 5Cr @B (L)— LHA(K)®H (L) 0

a | = Eia'
| l

‘
H™1(DRL) %4 H*(C®L).

But we can prove that the square in the above diagram is commutative ([13]). Therefore

we have the following
Coker €,.1=Coker (¥@D=Z_ H'(K)QH(L)
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Ker €,2zKer (6’@1)'~;§+;I‘orz“(H'(K). HY(L)).

Hence, by (3%)s, we have the exact sequence

032 HNKQHY(L) 2L H (KQL)-L, 3 TorN(HHK), H'(L))—0,
fad e PHRunty
where B is natural, since S can be described by the commutative diagram

H*(K@L) —P_, o, TorR(HAK), HY(L))

| B oo
H((K/CO)®L)e—=—32  (K/CYQHY(L)
o

with the canonical projection K—K/C, a is an isomm'phigm, and is exact,
Sp: 0 KP/CPos CPH s HEVH(K) s,

where K?/C?=D*=:B*"1(K) and S, is the sum of the corresponding connecting homomor-
phisms on Tor,®. (Note that each connecting homomorphism is‘ natural. )

We have to note that if C"(L) and B"(L) are flat then symmetric arguments on L
will produce a possibly different map ‘. But, for complexes K and L of abelian groups

we can prove that S=48" ([3]). Hence we have proved the following.

Corollary 2.3. For comlexes K and L of abelian groups such that each K™ is torsion-

free, the sequence
0— 5 HHK)@sH (L) -2 HNK@aL) L 32 Torm(H(K), HHLY) —0

is exact and splits by a homomorphism which is not natural.
By (3%), Tor/2(H*(K), H'L)) is generated by

{(cls(u),m, cls(v))\mEZ, cls()SHYK), cls()SHY(L) and T k&K*,
lEL*t such that &%, k=um, &% l=mv}.

In the Kiinneth Formula, for abelian groups the split exact sequence (i%); shows that the
homology of KQL (®=@);) is spanned by two types of cycles as follows;

A type I cycle is a cycle #»@v, where % is a cycle of K and v a cycle of L. That is,
the classes of type ] cycles is the image of a.

For a triple {cls(u),m,cls(v))=Tor A(H*¥(K), L¥L)) with d%k=um
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and §%/=mv for k&K? and IL*"!, the cycle

Jﬁa(k®1):u®l+ (= 1D*%Rv

is a type @ cycle.
Note that cls(u)=H*1(K) and cls(v)eH*(L) with p+g=n imply that
(1) #@ISKMQL " CT(KRLY",
(i) AQUEK*QL T (K®L)",
(iil) RIS K*QLIC(K®L)Y" 1.
Hence d(A®{)=(KX®L)" and since
L (@D + (- D*%*Qv]= (- D 1uQ@u+ (~1)*4Qv=0

it follows that

cls(%&(k@l})zcls(u®l+(— V*%Qe))esH(KRL). It is easy to see that

{classes of type I cycles} [} {classes of type I cycles}=1{0}.

Therefore, we can define
7: Tor?(H(K), H(L))—H(KQL)/ a(H(K)RQH(L)) (H=H*)

by rt=(-1)* cls(i—&(k@l)), where f={(cla(u),m, cls(v)) such that there exist k*=K*
and I&L*! satisfying §k=wm and 8§ =mv. That is, for ¢ STor2(H**I(K), H'(L))
(H=H*)

rit=cls(( - 1)@ +kRv)
(Note that #@IC*H{K)RL? and k@Quve=K*RQCH(L)).
Since D=K/C, the map
H(KQL)—— —~——H(DXL) (H=H*)

carries r¢=cls({—1)* u@{+k®v) into cls((k+CYRv). ((k+C)®v is a cycle in DRL
because §’4=C). On the other hand, in (3%)s we have

aSy(t)=cls((& +CYRv).
For each element x=y+2 H"(K®L), where y=7(t)
and zEa(E;_LH’(K)@H“(L)), B is defined by B(x)=!.

Proposition 2.4. Under the hypotheses of the Kinneth Formula for abelian groups,
7 is an isomorphism and £ is the inverse of 7.

- 83 —
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3. Cohomology Spectral Sequences
Let A* be a differential Z-graded module (DG,-module) with a boundary operator
§: Atemrm — AV (nEE, §00).
A filtration F* of A* is defined by a tower of differential Z-graded submodule
TP AR AR TR AR GE3O,
which is called a descending filtration. Note that

W) YV nez, FPADFHIA”
(2) 5(F’A’“)CF’A’+’“.

Definition 3.1. A filtration F* of a DG;-module A* is said to be bounded if for each
degree there exist integers s=s(#)>>¢=¢(n) such that

FA* =0, FIA*=A"

That is, the filtraction of each A" has limit length:
FtA"= A" DF A Do DF A= (),

A filtration F* of A* is said to be comvergent above if

UF?A*=A*

P

and bounded below if for each n(degree) there exists an intege s=s(#n) such that FA"=0.
Definition 3.2. A Z-bigraded module is a family
E= {E”'lﬁ, q=0, +1,42 e}

of Z-modules. A differential d: E——E of bidegree (r, —r+1) is a family of homomor-

phisms

d: E*"

W EPEN 9T

with d?=0 for each p,q. The cohomology H*(E)=H*(E,d) of E under this differential
is the bigraded Z-module {H#*°(E)} defined by

H#9(E)=Ker(d: EM*—sE#*" =1+1) [4E#" 5771,
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A cohomology spectral sequence E={E,, d,} is a sequence E3, E, - of Z-bigraded mo-
dules, each with a differential |

d’: Eri‘ﬂ______._m,ErP-%'p g-141 (732’ 3’ )
of bidegree (r, —7r-+1) and with isomorphisms

H*(E,, d.)=E, (r=2,3,)
The bigraded module E; is called the imitial term of this spectral sequence (Sometimes it
is convenient to start the spectral sequence with r=1 and initial term £;).

Consider the filtration (3%3%), above., This filtration induces a filtration on the Z-graded
cohomology module H*(A*), with F*(H*(A*)) defined as the image of H*(F#(A*)) under
the injection F2A¥ — A%,

That is, the filtration F* of A"* determines a filtration F*#4™ of each A" and the differ-
ential of A* induces homomorphisms §: F*tA"—F#4™! for each p and each n. The

family {F?A"}={F?A"*|p+q=n} is a Z-bigraded module.

Definition 3.3. A cohomology spectral sequence {E,, d,} is said to comverge to a
graded module H*(in symbols, E——>H*) if there exists a filtration F* of H* and for
each p there exists an isomorphism E_*z=F*H*/F#1[{* of graded modules, where E_?* is

defined as follows.

Let {E., d,} (r=2,3,+-+) be a cohomology spectral sequence. If C*=Ker d; and B?=
Imd,, then E3;=C?/B? Since EH*(E d5), E, is isomorphic to a quotient group C3/B?
of C*/B2,

Therefore,

Ker ds=C3%/B?, Imd; =B*/B*? (B2 B, 3¢ C%)
and thus we get a sequence (=B B*_---C-CC*(C!'=E, of bigraded subgroups of £,
such that

@ E,p1=C"/B"
® Ker d,=C"/B"™"1, Im d,=B"/B™.

We now put

c=(ic, B =(B", (B"=CY),

Tag

and define Ep=C_/B_?
That is, E_#9=C_1?/B_b (E.={E)).

— 85 -
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Theorem 3.4. Each filtration F* of a differential Z-graded module A* determines a
cohomology spectral sequence {E,,d,} (r=1,2, ) with natural isomorphisms

E,’g_Hi(F’A‘./FHIA}) H i.e. , E}"'EH”'(F’A‘/F’*"A‘)

If F* is bounded, then EJ—H*(A").
That is,

E2=FHY(A"))/FHI(H*(A*)); i.e.,
E_ I FH(HM(A%))/FHI(HMI(AY)).

Proof. We put
Z2={ae=F?A*| Sac=FHT A%},

which is a submodule of F?A*. In particular, Z,=F*A*, since JF*A"CF*A™ T F?A*.
Each Z,* is Z-graded by degrees of A",
So we may regard Z, as the bigraded Z module with

Z 2= aEsFP AP | JaesFHr Arroti},

Then our cohomology spectral sequence of the filtration F'* of A* is defined by taking
Ep=(ZJFHIA®)/ (231 UFIA®);

i.e.,
Ep2=(Z 20 JFHIAN) J(8Z0=1 -3 JFPHIAMT),

where r=1,2,*+  and while d,: E,——E*" is the bomomorphism induced on these
subquotients by the differential §: A®—A".

Set Ef=F*A*/F**1A* and let p*: F*A*—E,* be the canonical projection. Before
proceeding, we shall introduce the concehpt “additive relation” as follows.

Let R be a commutative ring with 1, and 4 and B be R-modules. An additive relabion
Y: A——B is a submodule of ADB. The snverse relation y™!: B——A is defined by

77i={(4,a) | (a, )T ADB}BDA.

For two additive relations y: A~—B and p: B—C,
we also define the additive relation pT: A——C by dr={(a,¢)| 7 b=B such that (a,%)
€r, (b eo)Ep)
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and we define the following:

Def r={ae=A| 7 bB such that (4,8)r}, Imy=Def 771,
Ker T'={as=Al (a,0)T}, Ind Y=Ker ¥4

In particular, there is an isomorphiom (C13D)
Def T/Ker Y=Im y/IndY (3%3%),
We now return to our proof. Consider the additive relation
ErrSEr 8 g

which are induced on these subquotients by §: A®—— A",

By our definitions, it follows that

F={(v"a, 7**'da)| a<=Z,’}
§'={y*"a, p*da)| a2},

and thus we have the following:
Def 6’=V’Z,’, Ker 5'=7]’Z£+1
Im 3=9*(5Z2.2"), Ind &'=9*(8Z8:}*")

(Note that @ V aes28,,, JassFH+IAYCF** A* and 22,272,
@) E2-"=F*"A%/Frr14%),

Since 024z ozt 28, Z,* in view of inclusions, we define
Er=(PZ2)/ 1 (3Z2=;*) (3%63%)s

for each r=0,1,2, -+ (Note that if =0 then p?Z/p*(3Z*:}) =FrA%/FriiA%), Itis easy
to see that 4 induces homomorphisms

Epr 8! Ep» &' g+
with

Im &} =122 )P @ L

Ker d,2=9*(Z}:,)/9*(821:7%).
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Since §6=0, it follows that Im 4,/ Ker 4,* and
H’(En d,)gn’(ZfH)/vy"(aZ,"’) mE:‘H'

Hence we have a cohomology spectral sequence. If r=0, then Z,=F*A*and d,: E*—
E.* is just the differential of the quotient complex E=F?A®/F#14* This proves our
first part of the theorem.

By (3%3%);, our cohomology spectral sequence defined. as above can also be derived
from the towers ([3] and [12])

L A Lt VAR . VAL G TTTETIDI S L L P r=FrA*
| I O O L
B,’C: szCszC ..................... CCz’CC;'CC,’z EOP,

where CA=9*Z2=2.2/Ft1A* and B =y*0Z4:]H =2t/ FtriA™,
Consider the additive relation
0% FPAN/FPHIA® o FPT AR LTI AR,
By (#%:%);, we have the isomorphism
Def §%/Ker d*=Im 4%/Ind 2.
Therefore, from the above tower, we have the isomorphism
C/*/Ch,, =BE/B.
This gives d, as the composite
Ef=(1"Z.*) [P @2t =C*/ B! —T,C.2/Chy =
BHG/ BAT el CHT /BT =ES,

where 7 is the canonical projection and v is the injection.
This gives us the cohomology spectral sequence.

In order to prove our last part we put
C=Ker 8(cycles in A*), B=Im §(boundaries in A%).

Then our filtration F* induces filtrations F*C=C[|F*A4*,
F*B=B(1F?A* on C and B, respectively. By the description on the upper part of Defin-

ition 3.3, we have
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H*(FPA*y=F*(H*A*)=(F*C|JB)/B.
Hence, by a modular Noetherian ésomorphism ([13]), it follows that
FYH*A®)/FHI(H*AY)=(F*'C{JB)/(FIC\JB)= F*C/(F*IC\)F*B).
On the other hand,

FPH*/FHUH*:Fl(HiAl)/FH—I(H#A*)
=~ (F*C UF!-HA*)/(FPBUFP+1A*)-C;FﬁA§/F!+IA* (3%3%),

Since
Er=(p*Z.?) /9*(8Z2=;40),
it follows from (3%3%¢)s that
the numerator of £,f=(Z 2 JF*1A%)/Fr1A%TF2A%/F*14%,
the denominator of Ef=(§Zfz]+ | JF*HIAW)/FrIAM,
and thus
Ep=(Z UFriAn)/ (32t FFA%)
il.e.,
Ept= (Z P JFHIANS) [(SZE D hr-2| JFrHI AN,

Assume that the filtration F* is bounded. Then by Definition 3.1, for each total degree
n=p-+q there exist t==¢(n) and s=s(n) such that s>¢ and

FrA™= A" O FH A e DEF A=

Therefore, in the numerator of E,*»%, an element aZ,»? for r large has dac=Fr+ A+
=0 (p+rz=s), and hence a=F*CH,

Therefore the numerators are F#CH||F#14*+°  Ag for the denominator, - for r large
every element in F*B*** js the boundary of an element in F?~"+24* that is, of an element
in Zfzjt,

Therefore the denominators equal F*B**|JF*A*1 Since E_ is defined as the intersect-

ion of numerators devided by union of denominators, we have
E.Pﬂ = (F’CH'! U F)+1A#+¢)/(1;‘)B)+¢ UF)'{—IAM“):_:F’HQ/F"&-IH*

by (3%3%) Therefore, it follows that E=—DH*(A"). /77
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Example 3.5. Let # be a field, and let A be a differential Z-graded #-module (a
vector space over #). For a filtration F' of A such that

Oy JACFACF AT,
there is a spectral sequence (E",d") such that

Ey=H(F,A/Fs14), i.e., Bl =Ho(Fyd/Fpad) (CoD.

Furthermore, if F is bounded then E?,—>H(A) (rom.
In this case, each E’, . is a vector space over #. Thus for any vector space V over #

we can consider the vector space Hom g4 (E7,,q, V), consider the semi-exact sequence
F

id
r d -yl id d i
Epiryqorsr SEENETH BT 2B, By gkl

and the sequence

P, T -]
Homy(E #eryatr-ls V)d Hﬂmg-(E Par V)-"*W»Hﬂmy(E prryaertls V)
U W
}}J | —fod p,0y & Iomrmmnenmnanmsgod  sir o pii

(Note that d,2""7%*""1 (f)=fod"s,.). Then we see that
drh'iadf"':ﬂ'"!:().
In the above second sequence, we have isomorphisms

Ker 4,#%/Im d* "% "1=Hom gz (Ker d%),¢/Im d'psr,a-re1s V)
sHom (&3, V)

because that

Ker d,."é: {f:1 ETpq— V]| f is linear and f|Im d pr,-re15=0 }
Im 42" 1= {g:E .~V g is linear and g|Ker d"y,,=0 }

In detail, we have the isomorphism

Ker d ,"/Imd LA Lt PO -—-.Hom"-(Ker ,,q/lm d"-t-r,q..r-uyV)

C}p] I~ — flKer d%,,q

Note that () for any subspace U of a vector space W over # and for each f&Hom #W,
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V), there exists an extension F&Hom F(W,V) of f and @ for each
g&Hom g (Ker @7, o/Im d’pyy 0041, V)
and for any two extensions &; and §.=Ker d,#%/Im d,#"""*""1 of g,
we have &1—§:=Im d "
Let us put
E»'=Hom g (E,»%, V).

Then, by the above reason,
Etd=Ker d,°/Im d,*""**""1=Hom 5 (EHLV).

Therefore, we get a cohomology spectral sequence {(E,, d,} from {E",.d"}. In general,
when a spectral sequence {E", 4"} of vector spaces over a field # is given, we can prove
that {£,=Hom #(E", V), d.} (V is a vector space over #) is a cohomology spectral sequence
by the same method above. ///

Proposition 3.8. If a filtration F* of Z-graded module A* is bounded below and
convergent above, then E——DH*(A%).
Proof. As in the prove of Theorem 3.4, we put

C=Ker 3, B=Im 4.

Then the intersection of the numerators of E,? is FAC|JFt+i4* since F* is bounded below.

Fach element of F*B is a boundary da for some ac=A*-- L;[F*A*, hence ae=F*A* for

some ¢, since F* is convergent above. Thus a&Z2:5*! for r=t+p~1, so F!B|JF*1A*

is again the union of the denominators §Z#:3*'{ JF**A*, and thus we have
EP==DH*(A%)

(for details see the last part of the proof of Theorem 3.4)
Therefore, even if F* is not bounded we have the following:

F* ig bounded below and convergent above—=)
F* gives the convergence Ef==DH#*(A%). /7]
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4. Cohomology Spectral Sequences of Bicomplexes.
Let a bicomplex K be a family {K*?} of modules with two families
5/: KP:V,_____,K}+I;¢, 5': K’;Cw___)K’,¢+l
of module homomorphisms, defined for all integers p and ¢ and such that
§'9'=0=0"93", 8'6"+0"9'=0. (3% 3563%),
Thus K is a Z-bigraded module and &,8" are module homomorphisms of bidegrees (1.0)
and (0.1), respectively.

Definition 4.1. A bicomplex K is positive if K**=( unless p>0 and g=0.
(Note that each object K*? in a bicomplex K may be R-modules where R is a commut-
ative ring with 1), A-modules where A is a commutative algebra with 1, graded modules

or objects from some abelian category. We define
HA(K)=Ker(d": K#%—aK#")/Im (71 K»* 1—aKb?),
Then it is a bigraded object with a differential
& Hf(K)——HAT(K)
which is induced by the original &. We also define
HPH(K)=Ker(3': H""(K)——Hs#*V*(K)/Im(3': H " *(K) —H"(K)),

which is a bigraded object. Similarly, the fterated homology H;'H,*(K) are defined.
Each bicomplex K is defined as a single complex X=Tot{K) such that

X"=37 K¥%, §=8'+3": X"—— X" €T TN

pEe=n

Then it follows from (3%3%3%), that 86=0. If K is positive, so is X, and in this case

each direct sum in (3%3%3%), is finite.

#

For example, let R be a commutative ring with 1, and let X and ¥ be complexes of

R-modules such that

Then XQY(®=Qs) is a bicomplex {X*®Y*} with boundary operators
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(i) By Definition 4.2, an element ac=(F*X)" hag the form

Q=M L@ttt gt B2 g?e= K0 and plgen.
Thus we have
5a::51a’,c 1\,(5/{19,‘1 +5va»+1,9~x) + (5’(1’“’““1 +_5'aﬂ»z,¢~2) +,,.’

where we have grouped terms of the same bidegree. Therefore,

(i) d"a™'=0=aesZi™,
(i) 8"a*?=0=08'a** +§"a** 1 I a= L.

Since

E=(n*Zy#")/ (9?62, 1%) for each a*'&L,*",
we- have

at*=af" a1 (mod FHX)
and

5(a},q +a}+l,ﬂ’1) :alalﬁ‘lpq ’IEFI""IX.

Hence @=L ¢ (a? ) =a*"=n?Z»%, and so we have L °=p*Z;f. Next, suppose

that an element

b=bP L LR is contained in (F/#7'X)"™
If 3”67 1%=0 and §b*"1*+3"p**"1=0, then

Gb= (@'t I+ 4 e is contained in (F*X)".
Hence we see that #<Z;*"1%. In this case,

PPob=g"b* "1+ 372,
and thus M2 =8 Z,2 %t Zs° ([138]). In consequence, we have

E 9= L2/ MatS.

(ii) For each a**<Ls"" if we put

a= aﬁ,l +a)+hq-1 4 a’+2;€"2€(F‘tX)”'



18 Kyu-Hyuck Chel

3 (x@) =8'2RQy, 0" (xQy)=(~—1)4**= xQd"y

(*Qys==XR®Y). It is easy to prove that §’ and 4" defined as above satisfy (3:3%%),.
In this case,

Tot(X@Y)B(X@Y)"z?": X*QY¢, 8=5"+8".

re P

Definition 4.2. The first filtration F* of X=Tot(K) is defined by the subcomplexes
F\* such that

(FRX)" =23 Kbk, €3 N
h2p

Then we have the following:

@) (FeX)yC(FrX)™,
(i) - DEFLX) D(F XY e
(iii) X":L’J (FX)".

In this case, by theorem 3.4, we have the cohomology spectral sequence {E,’, d.}
which is called the first cohomology spectral sequence of the filtration F;.

Theorem 4.3. For the first cohomology spectral sequence {E,, d,} of a bicomplex K
‘with associated total complex X, we have the following (p+g=n):

(1) Ef?*=L,""/M,*", where
L= {a»*c=K*?|§"a** =0 and J a**P? i K11 gyuch that 8'e™®
=gt}
M= {§h 1§ I K |G 1 = (), LTS K1Y, phITIcs KRt
(ii) Es'#*=L»*/Ms** where
L ={a?*<K?""|8"a? =0, f a**P?I&K* 19t guch that §'a??= —§"q*+1"?
and Ha**# 2 K*+#%°2 guch that §'et*1 ¥ 1= —§7g¥t29-3)
M= (§or 1 1" b2 | g2 ez K #2351 gyeh that §740#%41=(
and g H* VS K*1® such that §'6F 2= —§7ht~19, pri-lgz K1)
(iti) E/* ' =HHP (K).

Proof. Recall that E*= (9'Z,2)/7*8Z24=5" (see(363),) in the proof of theorem 3.4.
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Then we have da=§'att? 2= (F X )",
It follows that a&=Z;*? and e=a®"* mod (F/HX)"
implies that a**e= L& (aP ) =at%<y*Z,*", Similarly, suppose that an element

b=bF 2Tl L pEm b L ph Ol L pAYLe2 L L g contained in (F2T1X)"?
If 976t~ #%¥1=( and ¢4 2" 1= ~§"6* 1%, then

db=(§'b*" 17§ b? 1) +--- is contained in (FX)",
and thus be=Z,2" 27!, Since

7*0b=3'b*" 1" - 5!
we have M »T=n*gZ 2%+t Z:»% ([13]). Hence it follows that

Estt= Lyt [ M3t

(iii) Recall the proof (i) of this theorem, In Lj the first condition on a** makes
it a 8"-cycle, and thus it determines (cls" a*%) €H,#*(K); the second condition asserts
that this homology class (cls” @*?) lies in the kernel of §': H**(K)—H+1(K),
The term §%84* %! in M, can vary a®* by a §"-boundary, leaving (cls” a®?) unchanged;

the term &'0*"1+% can vary (cls” @”%) by §'(cls” #°~1+%). Therefore the correspondence

L%/ Mt —— ——H*H3 (K)
i
Ca*) | —sclg’ (cls” a@®?)
provides the desired isomorphism Eg*°==H *H;(K). 11/

Corollary 4.4. Under the situation of Theorem 4.8, if K*==( for p>>0 then E/—
H({X). If K is positive, the E’ lies in the first quadrant.
Proof. By (si¢i%)s, we have

X"= | (FeX),

and thus the filtration F; is convergent above. The fact that ;K®?=0 for p>0 means
FyX=0. Hence the filtration F; is bounded below.

By Proposition 3.6, EF/*—>H(X).

Next we assume that K is positive. Then K**° lies in the first quadrant as follows.
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g-axis
ko3 . . « R33
k0.2_
kzd
kO.l_ . .
‘ l ‘ b-axis
kl-o k2.9 k3.0

Therefore, by

EM=HHL(K) (i) of theorem 4.3)
E' lies in the first quadrant. /7

Theorem 4.5. Let X and Y be complexes of abelian group with each X™ a free group
such that

al
X —a X X" e

Vi O yme .

In the first cohomology spectral sequence (see Definition 4.2) of the bicomplex K=XQ®Y
(®=@3), we have

EP*=E "' =HNX®H,"(Y)).
Proof. As before, we put

0 (x®y) =8'2sQy, 8"(x@y)=(—1) xRy
0=4a+6" (ROYEXRY).

Then, by the first filtration F,*, we get

EfM=H®?H,"(K) (see (iii} of Theorem 4.3 and £ is E' in Theorem 4.3).
In the exact sequence of abelian groups,

0——Im §"—Ker §*———H,*'(¥)—0.
The sequence

0~ X*QRIm 3" — X*@Ker 8" —X*@H'(Y) —0
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is exact since X" is free. This implies that
HP(K)=XQH,*(Y).
Hence, H/H (K)=H*(XQH(Y)) and thus
E?*=H(XQHS(Y)).

Next, we recall the Kiinneth for abelian groups in Theorem 2.2.
HA (X)QHSAY )2 H (XQH(Y)) -—E«»> Tor, (H(X), H'(Y))

which is split since each X" is free, where
HAY): 0—HF(Y)—0 is a complex.
Therefore, as in Proposition 2.2, each element of H*(X®@H(Y)) can be described by
(cls()® cls(p)y+els ((— 1)’ QL+ kR0,

where cls(u)EH (X)), cls(v)EHS(Y), kesX?, we X, 1€Y1, v'e=Y? and there

exists an integer m such that

d'k=u'm and §"l=mv'.
Then

Qv+ EQUEX* QY T (FK)", wRQISXHHQYIC(FHIK),
and thus

0((u@v+kQV) + ((— D' @) =k@u + (—~ 1) R3]

=wm@v —u' Qmv’ =0.
Since the homomorphism
dg?%: B -1
IR R
HANXQHS(Y)) —H " (XQH |(Y))

——— e LB

is induced from &, by (%) in §3 we get
ds"*=0. This implies that dy=ds=+=0 and F;=E.. /17



22

10.

11.

12.

13.
14.

15.

Kyu-Hyuck Chot

References

. E.F Assmus., Jr, On the cohomology of local rings 1ll, J.Math. $(1959), 187
—199.

. M. Bockstein, Sur le spectrure homologie d'uncomplexe, C.R.Acad. Sef. Paries
247(1958), 259—261.

H. Cartan and S.Eilenberg, Homological Algebra princeton, 1956.

A. Dold, Homology of symmetric products and other Functors of complexes, Awn
of math 68(1958), 54—80.

S. Eilenberg and S.Maclane, On the homology Theory of Abelian Groups, Can.
J.Math. 7(1952), 43—55.

. S. Eilenberg and J.Moore, Limits and spectral sequences, Topology 21(1962), 1

—23.

. P.J. Hilton and S.Wylie, Homology Theory, Cambridge, 1960.

S.T. Hu, Homotopy Theory. Academic press, New York and Lodon, 1959.

. K. Lee, Fundations of Topology, Hakmoonsa, vol 1 1980, vol I 1984.

J. Leray, Structure de I’ anneau d’ homologie d' une représentation. C.R. Acad
sci paris. 222(1946), 1419—1422.

, L’anneau spectral et 'anneau filtré d’homologie d’un espace localement
compact et d’une application continue, J. Math, pures Appl. 28(1950),
1—139.

S. Maclane, Triple Torsion products and Muiltiple Kiinneth Formulas, Math.
Ann, 140(1960), 51—64.

, Homology, Academic press, 1963,

W.S Magsey, Exact couples in Algebraic Topology, Amn of Math. 56( 1952),
363—396.

E.C. Zeeman, A proof of the comparison theorem for Spectral sequences, Proc.
Camb, Phil Soc. §3(1957), 57—62.

Wonkwang University,
Iry (510) Korea.



