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The Moment Problem and C"-Scalar
Operators

by
Ralph de Laubenfels

> Abstract <

We show that a bounded linear operator, T, on a Banach space, X, is C"-
scalar if the sepuence {TE%W (T x) )=,  is positive-definite, for suffi-
ciently many ¢ in X*, x in X. We use this to show that (T./){) = t/(£)+
nJf(t), where ]f(t)zI;f(s)ds, is C*-scalar on L*([0,1],2), for 1<p<eo,
for a large class of measures, v, Other corollaries include the spectral theorem
for bounded symmetric operators on a Hilbert space.

Intreduction

An operator is C™-scalar if it has a functional calculus defined for any function with
n continuous derivatives. Even in finite dimensions, this provides an interesting generali-

zation of self-adjoint operators. The 2X2 matrix

fla) Sf'(a)

1
] is C'-scalar, with f(A)= [ 0 7 a)]’ defining an algebra homo-

A= {0 a
morphism. A similar construction, along with the Jordan canonical form for nxazn
matrices, e;hows that any s#x#» matrix is C"-?-scalar. (See [3]).

The moment problem, from classical analysis, asks the following question: given A,

a subset of the complex plane, for which sequences {a,)z., will there exist a positive

measure g such that a,.:Lt"d‘u(t), for all »? Simple answers have been given for A=
R, [0,00], [0,1], or the unit circle. (See [8]).

Connections between moment theory and the spectral theorem have been observed
many times. For example, in [17] and [7], the spectral theprem is proved using moment
theory; in [6], some solutions to the moment problem are proven using the spectral
theorem. 7

In thls paper, we use the moment problem to get sufficient counditions for an
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operator, T, to be C"-scalar on [—|iT||,/IT}]. (Proposition 7) The case #=0, on a
Hilbert space, gives the spectral theorem (Corollary 11). A sufficient condition for T
to be C"-scalar is that the sequence {@{;)T S(T+"x)}y., be positive-definite, for
“sufficiently many” ¢ in X*, x in X. The precise meaning of “sufficiently many” is
contained in the definition of a “determining set” (definition 3).

When X is a Banach lattice, it is sufficient to have the sequence above be positive-
definite whenever ¢ and x are positive. (Corollary 9). When X is a Hilbert space,

-

with inner product “<7 =", it is sufficient to have the real and imaginary parts of the
sequence {—(E-f:!—m- < x, T¥"x>>}7., be positive-definite, for all x in H (Corollary 10).
Thus, the proof of the spectral theorem (Corollary 11) merely involves showing that
{<x, T*x>}g., is positive-definite whenever T is symmetric.

We apply our results to an operator first considered by Kantorovitz ([4],[51),
(T,,f)(t)etf(t)-+—nj;f(s) ds. He showed that T, is C"-scalar on L#0,1], for 1<p<
oo, We will extend this to p=co, and to a large clast of measures. We will show
that 7, is C"-scalar on L*({0,1)),7), for 1<Zp=Cco, whenever Lebesgue measure is ab-
solutely continuous with respect to », with a bounded Radon-Nikodym derivative, and v
is finite.

All operators are bounded and linear, on a Banach space, usually labelled “X”.

Definition 1. If D is a closed, bounded subset of the real line, then C"(D) is
defined to be the set of all f: D—C with » continuous derivatives. We will use the

norm
ey Il o=supllf 2 = sup {]/P(x)|}
ksn L 1Yty
where /% ig the k'*-derivitive of f.

Definition 2. 7T is C"-sealar on D if there exists A: C™(D)—-B(X), a continuous
algebra homomorphism, such that Af,=1, Af,=T, where fo({)=1, f;(HH)=t. Af is
often written “fF(T)”.

T is C"-scalar on [a,b], a bounded interval, if and only if there exists Moo such
thar {[p(TOI<<M|\|pll,., for all polynomials p, because the polynomials are dense in C"
(La,b]).

Definition 3. a S X X X* is a detfermining set it there exists M<(oo such that when-
ever T is in B(X, X*"), with [(Tx)($) | <|alllidll, for all (x,¢) in a then ||T||<M.
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Theorem 4. Suppose there exists M<(eo such that for all(x,$) in @, a determining
set, there exists uy, ., a complex-valued measure, such that {|us,.l|, the total variation
of 5., 1s less tann M|uy,. [a,b]], and for all &

T‘l—}—n J & x
N3 Hl),ﬂé( w) = | thdp,(t).

Then T is C"-scalar on [a,b]"
Proof. If p is a polynomial, then
b0 =% L0 g0+ [ 1P (Oduint),
for all (x,¢) in a, so that
16D I<E O G0 4116l
<z ﬁ%—’«,@l‘ T el -+ 1161 (M L, 631)

Ul N nxu@ “Z}‘” ML,

Since « is a determining set, there exists K such that [[p(D)|< Kl pllm.. Since p

was an arbitrary polynomial, 7 is C"-scalar on [a,b].

Definition 5. A sequence {a,}s., is positive dejinite if T aye;as:;20, for all finite
sequences {a;} of complex numbers.

There exists a positive measure g such that a,= I Rt"d,u (£), for all », if and only
if {a,} is positive-definite. (See [8]).

We will also need the following elementary lemma.

Lemma 6. Suppose a,,:fkt"du(t), where # is positive and there exists M, so that
|a.l <Mr", for all ». Then g is unique and supported on [ —r,7].
. !
Proposition 7. Suppose the real and imaginary parts of the sequence {ﬁ»’—};ﬁ-gé

(T**"x)}1., are positive-definite, for all (x,¢) in @, a determining set. ThenT is C"-
scalar on [T}, ITII].
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Proof. For all (x,¢) in a, since ij;;f:};)*!fcé(?“’*"x)lg Hell =l NT™HCHTID®, for aly

k, there exists unique positve measures 7z, and o4, such that

k!

il
“GEmT $TH) =IHT trd (mg,c+ 604, (1)

Bk 4|

Let ps,.=my o+ ivs,5.  Since |lgg,/l<< 2\, L =TI, IITH]], the result follows from

Theorem 4.

Corollary 8. Suppose X is reflexive, and the real and imaginary parts of {¢(T*x}3.,
are positive-definite, for all (x,¢) in a, a determining set. Then T is a spectral ope-

rator of scalar type.

Proof. When X is reflexive, T is a spectral operator of scalar type if and only if
T is Cr-gcalar. (See [27).

Two examples of determining sets are given in the following two corollaries of
Proposition 7.

A complex Banach lattice, X, may be formed by taking a real Banach lattice, Y,
and letting X={x--iyjx,» are in ¥}, with the norm on X having the property that
l|lx+£yll> max (l=ll, ll¥l}), for all x,y in ¥, and X** the positive cone of X, be Y+.

Corollary 9. Suppose X is a Banach lattice, and the real and imaginary parts of

{-—(—E—z!;)—f-qS(T”"x)}r-a are positive-definite, for all positive ¢, x. Then T is C"-scalar

on [—!ITll, lITH3.

Proof. We need to show that (X*)*x Xt is a determining set(See definition 3). So
suppose T is in B(X, X**), with [(Tx)(){<lIxl|i@ll, for all positive x in X, postive
¢ in X* If ¢ is in X*, then there exist ¢, s, 3, ¢o In (X*)*, such that ¢, is

orthogonal to ¢, ¢ is orthogonal to ¢, and
= (g — ) +i(P3—Pa)-

|(T0)$1< £ Tx(0 1< Sl gl < alisi gl if xeX*, so that |[Tll<dllsll, for all

positive x.
Repeating the argument above gives ||T}|<16, so that (X*)*xX* is a determining

set, as desired.

Corollary 10. Let H be a Hilbert space, with innier product “< >". If the real
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o

. . ! R . .. .
and imaginary parts of {A-ZE—%’-‘—)T (x, T*™x));., are positive-definite, for all x in H,

then T is C*-scalar on [ —||Tll, IIT!l].

Proof. We must show that {(x,%)|x is in H}CZHxH is a determing set (See
definition 3).

First, Suppose T is symmetric, and |<x,Tx>>|<||xl?, for all x in #. A straight-
forward calculation gives (x, Ty, }=1/4 [{x+y, T(x+y))~{x—y, T{(x~y))+i{{x+iy,
T(x+iy))—(x~iy, T(x—-iy))]
so that

{2, Ty> | <1/4llx + ylP+ llo— 1+l -+ 9 ]2+ e~y ] = {lall? + Lyl

Thus |{T]|= Kz Tyl <2.

sup
Il Iyl <1

Now suppose T is an arbitrary bounded operator, such that [{x,Tx)|<|lxll’, for
all x in H. Let R‘:’E—;-(T-FT*), SE%»(T*mT). Then R and S are symmetric, and 7=
R+:8.

By what we’ve already shown, since |{x,Rx)| and [{x,S»)| are <lx]|?, for all «,
l|R|| and [|S|] are both<(2. Thus [|T|{<4.

This concludes the proof.

One consequence is the well-known spectral theorem.

Corollary 11. A bounded symmetric operator on a Hilbert space is a spectrai opera-
tor of scalar type.

Proof. For any «x,

D, Ty =(ZaT*s, SaT's)=l Sal* 20,
because T is symmetric; that is, {{x,T*x)}5., is positive-definite. The result follows
from Corollary 8.

Remark. Proposition 7 and Corollaries 8—11 can all be modified to conclude that
the operators are C"-scalar on [0,]{T|{], by adding the hypothesis that ga,.a,amﬁzO,

for all finite sequences {a;}, where a,zﬁﬁﬂgﬁ(’r gy, (See [8].

Example. For all future discussion, let
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@ (TNYD=t) +U B, where (JO=[ f(5)ds.

Thebehavior of 7, becomes more transparent when one notes that (T*.f) equals
(] Y™, for all &, so that g(T,) may be defined by g(T)/=(g]" /)", for any g

with # continuous derivatives.

Theorem 12. Suppose Lebesgue measure is absolutely continuous with respect to v,
with a bounded Radon-Nikodym derivative, 1< p<lco, and o is finite. Then T,, on L*

({0,17,v),is C"-scalar on [0.1].

Proof. Let m be Lebesgue measure. We're given that H T Hw and »[0,1] are finii-

te. Note that this implies that Jf(¢) :‘:Lf(s)ds is a bounded operator on L*([0,1],2),
by the following calculation (for 1<p<eo}.

A= | [ r(sdasirance)

S,rfllf(s)l"ds dv(t), by Jensen's inequality,
=[[ 11100 97 () av (s)

=[ v[o,mf(s)wj?;’- (s) do (s)

<oL0, LIS A1l

Let Kg(t)zzjig(s)ds. For p>>1, let ¢ be such that ~-%Zm+~;».~:1; if p=1, let g=oo.

To apply Corollary 9, we calculate as follows, for any positive f in L?, g in L%
...... 7 EEBYCIY T
Ty | #T e =2 [2(E O @@ r pav
N LR AN . D T T
“J'og(;%( i) (k+ z)l g ay
=5 (D[ rE e av)
i=0 1]

(integrating by parts (#—z) times in the ith term)

=['#(E (T K4 (g(Jis) do)
=0
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Since (_Z:}a(:.’)K"*"(g(]"f)dv) is positive, for all (f,g) in (L9)*x(L%*, a deter-

mining set, T, is C*-scalar on [0.1], by Corollary 9.

Corollary 13. Suppose g is bounded and measurable on [0,1] and bounded below by

a positive number. Then T,, on L?([0,1],¢ dt), is C*-scalar on [0,1], when 1< p<oo.

1.

2.

3.
4.

7.
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