The Moment Problem and Cⁿ-Scalar Operators

by

Ralph de Laubenfels

>Abstract<

We show that a bounded linear operator, T, on a Banach space, X, is C^n -scalar if the sepuence $\{\frac{k!}{(k+n)!}\phi(T^{k+n}x)\}_{k=0}^{\infty}$ is positive-definite, for sufficiently many ϕ in X^* , x in X. We use this to show that $(T_nf)(t) \equiv tf(t) + nJf(t)$, where $Jf(t) = \int_0^t f(s)ds$, is C^n -scalar on $L^p([0,1],v)$, for $1 \le p \le \infty$, for a large class of measures, v. Other corollaries include the spectral theorem for bounded symmetric operators on a Hilbert space.

Introduction

An operator is C^n -scalar if it has a functional calculus defined for any function with n continuous derivatives. Even in finite dimensions, this provides an interesting generalization of self-adjoint operators. The 2×2 matrix

 $A \equiv \begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix}$ is C^1 -scalar, with $f(A) \equiv \begin{bmatrix} f(a) & f'(a) \\ 0 & f(a) \end{bmatrix}$, defining an algebra homomorphism. A similar construction, along with the Jordan canonical form for $n \times n$ matrices, shows that any $n \times n$ matrix is C^{n-1} -scalar. (See [3]).

The moment problem, from classical analysis, asks the following question: given A, a subset of the complex plane, for which sequences $\{a_n\}_{n=0}^\infty$ will there exist a positive measure μ such that $a_n = \int_A t^n d\mu(t)$, for all n? Simple answers have been given for A = R, $[0, \infty]$, [0, 1], or the unit circle. (See [8]).

Connections between moment theory and the spectral theorem have been observed many times. For example, in [1] and [7], the spectral theorem is proved using moment theory; in [6], some solutions to the moment problem are proven using the spectral theorem.

In this paper, we use the moment problem to get sufficient counditions for an

operator, T, to be C^n -scalar on [-||T||, ||T||]. (Proposition 7) The case n=0, on a Hilbert space, gives the spectral theorem (Corollary 11). A sufficient condition for T to be C^n -scalar is that the sequence $\{\frac{k!}{(k+n)!}\phi(T^{k+n}x)\}_{k=0}^{\infty}$ be positive-definite, for "sufficiently many" ϕ in X^* , x in X. The precise meaning of "sufficiently many" is contained in the definition of a "determining set" (definition 3).

When X is a Banach lattice, it is sufficient to have the sequence above be positive-definite whenever ϕ and x are positive. (Corollary 9). When X is a Hilbert space, with inner product "<>", it is sufficient to have the real and imaginary parts of the sequence $\{\frac{k!}{(k+n)!} < x, T^{k+n}x >\}_{k=0}^{\infty}$ be positive-definite, for all x in H (Corollary 10). Thus, the proof of the spectral theorem (Corollary 11) merely involves showing that $\{< x, T^k x >\}_{k=0}^{\infty}$ is positive-definite whenever T is symmetric.

We apply our results to an operator first considered by Kantorovitz ([4],[5]), $(T_n f)(t) \equiv t f(t) + n \int_0^t f(s) \, ds$. He showed that T_n is C^n -scalar on $L^p[0,1]$, for $1 \leq p < \infty$. We will extend this to $p = \infty$, and to a large class of measures. We will show that T_n is C^n -scalar on $L^p([0,1]), v)$, for $1 \leq p \leq \infty$, whenever Lebesgue measure is absolutely continuous with respect to v, with a bounded Radon-Nikodym derivative, and v is finite.

All operators are bounded and linear, on a Banach space, usually labelled "X".

Definition 1. If D is a closed, bounded subset of the real line, then $C^n(D)$ is defined to be the set of all $f: D \rightarrow C$ with n continuous derivatives. We will use the norm

(1)
$$||f||_{\pi,\infty} \equiv \sup_{k \in \mathbb{R}} ||f^{(k)}||_{\infty} \equiv \sup_{k \in \mathbb{R}} \{|f^{(k)}(x)|\}$$

where $f^{(k)}$ is the k^{th} -derivitive of f.

Definition 2. T is C^n -scalar on D if there exists $A: C^n(D) \to B(X)$, a continuous algebra homomorphism, such that $Af_{\theta} = I$, $Af_{I} = T$, where $f_{\theta}(t) \equiv 1$, $f_{I}(t) \equiv t$. Af is often written "f(T)".

T is C^n -scalar on [a,b], a bounded interval, if and only if there exists $M < \infty$ such that $||p(T)|| \le M ||p||_{n,\infty}$, for all polynomials p, because the polynomials are dense in C^n ([a,b]).

Definition 3. $\alpha \subseteq X \times X^*$ is a determining set it there exists $M < \infty$ such that whenever T is in $B(X, X^{**})$, with $|(Tx)(\phi)| \le ||x|| ||\phi||$, for all (x, ϕ) in α then $||T|| \le M$.

Theorem 4. Suppose there exists $M < \infty$ such that for all (x, ϕ) in α , a determining set, there exists $\mu_{t,x}$, a complex-valued measure, such that $||\mu_{t,x}||$, the total variation of $\mu_{t,x}$, is less tann $M|\mu_{t,x}[a,b]|$, and for all k

$$\frac{k!}{(k+n)!}\phi(T^{k+n}x) = \int_a^b t^k d\mu_{\phi,x}(t).$$

Then T is C^n -scalar on [a,b].

Proof. If p is a polynomial, then

$$\phi(p(T)x) = \sum_{i=0}^{n-1} \frac{p^{(i)}0}{i!} \phi(T^{i}x) + \int_{a}^{b} p^{(n)}(t) du_{\delta,x}(t),$$

for all (x, ϕ) in α , so that

$$\begin{split} &|\phi(p(T)x)| \leq \sum_{i=0}^{n-1} \frac{|p^{(i)}(0)|}{i!} |\phi(T^{i}x)| + ||p^{(n)}||_{\infty} ||\mu_{t,x}|| \\ &\leq \sum_{i=0}^{n-1} \frac{|p^{(i)}(0)|}{i!} ||\phi||T^{i}|| ||x|| + ||p^{(n)}||_{\infty} (M|\mu_{t,x}[a,b]|) \\ &\leq ||p||_{n,\infty} (\sum_{i=0}^{n-1} \frac{||\phi|| ||T^{i}|| ||x||}{i!} + \frac{M}{n!} |\phi(T^{n}x)|) \\ &\leq ||p||_{n,\infty} ||\phi|| ||x|| (\sum_{i=0}^{n-1} \frac{||T^{i}||}{i!} + \frac{M||T^{n}||}{n!}). \end{split}$$

Since α is a determining set, there exists K such that $||p(T)|| \le K||p||_{n,\infty}$. Since p was an arbitrary polynomial, T is C^n -scalar on [a,b].

Definition 5. A sequence $\{a_n\}_{n=0}^{\infty}$ is positive definite if $\sum \alpha_k \alpha_j a_{k+j} \ge 0$, for all finite sequences $\{a_k\}$ of complex numbers.

There exists a positive measure μ such that $a_n = \int_R t^n d\mu(t)$, for all n, if and only if $\{a_n\}$ is positive-definite. (See [8]).

We will also need the following elementary lemma.

Lemma 6. Suppose $a_n = \int_R t^n du(t)$, where μ is positive and there exists M, r so that $|a_n| \leq Mr^n$, for all n. Then μ is unique and supported on [-r, r].

Proposition 7. Suppose the real and imaginary parts of the sequence $\{\frac{k!}{(k+n)!}\phi(T^{k+n}x)\}_{k=0}^{\infty}$ are positive-definite, for all (x,ϕ) in α , a determining set. Then T is C^n -scalar on [-||T||, ||T||].

Proof. For all (x,ϕ) in α , since $|\frac{k!}{(k+n)!}\phi(T^{k+n}x)| \leq ||\phi|| ||x|| ||T^n|| (||T||)^k$, for all k, there exists unique positive measures $m_{\ell,k}$ and $v_{\ell,k}$ such that

$$\frac{k!}{(k+n)!}\phi(T^{k+n}x)=\int_{-||T||}^{||T||}t^kd(m_{\delta,x}+iv_{\delta,x})(t).$$

Let $\mu_{\theta,x} \equiv m_{\theta,x} + iv_{\theta,x}$. Since $||\mu_{\theta,x}|| \le 2 |\mu_{\theta,x}[-||T||,||T||]|$, the result follows from Theorem 4.

Corollary 8. Suppose X is reflexive, and the real and imaginary parts of $\{\phi(T^kx)\}_{T=0}^n$ are positive-definite, for all (x,ϕ) in α , a determining set. Then T is a spectral operator of scalar type.

Proof. When X is reflexive, T is a spectral operator of scalar type if and only if T is C^o -scalar. (See [2]).

Two examples of determining sets are given in the following two corollaries of Proposition 7.

A complex Banach lattice, X, may be formed by taking a real Banach lattice, Y, and letting $X \equiv \{x+iy \mid x, y \text{ are in } Y\}$, with the norm on X having the property that $||x+iy|| \geq \max(||x||, ||y||)$, for all x, y in Y, and X^{+i} the positive cone of X, be Y^{+} .

Corollary 9. Suppose X is a Banach lattice, and the real and imaginary parts of $\{\frac{k!}{(k+n)!}\phi(T^{k+n}x)\}_{r=0}^{\infty}$ are positive-definite, for all positive ϕ , x. Then T is C^n -scalar on [-||T||, ||T||].

Proof. We need to show that $(X^*)^+ \times X^+$ is a determining set(See definition 3). So suppose T is in $B(X, X^{**})$, with $|(Tx)(\phi)| \le ||x|| ||\phi||$, for all positive x in X, postive ϕ in X^* . If ϕ is in X^* , then there exist ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 , in $(X^*)^+$, such that ϕ_1 is orthogonal to ϕ_2 , ϕ_3 is orthogonal to ϕ_4 , and

$$\phi = (\phi_1 - \phi_2) + i(\phi_3 - \phi_4).$$

 $|T(Tx)\psi| \le \sum_{i=1}^{4} |Tx(\psi_i)| \le \sum_{i=1}^{4} ||x|| ||\psi_i|| \le 4||x|| ||\psi||$, if $x \in X^+$, so that $||Tx|| \le 4||x||$, for all positive x.

Repeating the argument above gives $||T|| \le 16$, so that $(X^*)^+ \times X^+$ is a determining set, as desired.

Corollary 10. Let H be a Hilbert space, with innier product "< >". If the real

and imaginary parts of $\{\frac{k!}{(k+n)!}\langle x, T^{k+n}x\rangle\}_{k=0}^{\infty}$ are positive-definite, for all x in H, then T is C^n -scalar on $\lceil -||T||$, ||T||.

Proof. We must show that $\{(x,x)|x \text{ is in } H\}\subseteq H\times H \text{ is a determing set (See definition 3).}$

First, Suppose T is symmetric, and $|\langle x, Tx \rangle| \le ||x||^2$, for all x in H. A straightforward calculation gives $\langle x, Ty, \rangle = 1/4 \left[\langle x+y, T(x+y) \rangle - \langle x-y, T(x-y) \rangle + i \langle (x+iy, T(x+iy)) \rangle - \langle x-iy, T(x-iy) \rangle \right]$ so that

$$|\langle x, Ty \rangle| < 1/4 [||x+y||^2 + ||x-y||^2 + ||x+iy||^2 + ||x-iy||^2] = ||x||^2 + ||y||^2$$

Thus
$$||T|| = \sup_{\|x\|_{2}, \|y\| \le 1} |\langle x, Ty \rangle| \le 2.$$

Now suppose T is an arbitrary bounded operator, such that $|\langle x, Tx \rangle| \le ||x||^2$, for all x in H. Let $R = \frac{1}{2}(T+T^*)$, $S = \frac{i}{2}(T^*-T)$. Then R and S are symmetric, and T = R + iS.

By what we've already shown, since $|\langle x, Rx \rangle|$ and $|\langle x, Sx \rangle|$ are $\leq ||x||^2$, for all x, ||R|| and ||S|| are both ≤ 2 . Thus $||T|| \leq 4$.

This concludes the proof.

One consequence is the well-known spectral theorem.

Corollary 11. A bounded symmetric operator on a Hilbert space is a spectral operator of scalar type.

Proof. For any x,

$$\sum_{k,j} \alpha_k \bar{\alpha}_j \langle x, T^{k+j} x \rangle = \langle \sum_{i} \alpha_k T^k x, \sum_{i} \alpha_j T^j x \rangle = ||\sum_{i} \alpha_k T^k x||^2 \geq 0,$$

because T is symmetric; that is, $\{\langle x, T^*x \rangle\}_{T=0}^{\infty}$ is positive-definite. The result follows from Corollary 8.

Remark. Proposition 7 and Corollaries 8-11 can all be modified to conclude that the operators are C^n -scalar on [0,||T||], by adding the hypothesis that $\sum_{k,j} \alpha_k \alpha_j \alpha_{k+j+1} \ge 0$, for all finite sequences $\{\alpha_i\}$, where $\alpha_k \equiv \frac{k!}{(k+n)!} \phi(T^{k+n}x)$. (See [8].

Example. For all future discussion, let

(2)
$$(T_n f)(t) \equiv t f(t) + n(Jf)(t), \text{ where } (Jf)(t) \equiv \int_0^t f(s) ds.$$

The behavior of T_n becomes more transparent when one notes that $(T^k_n f)$ equals $(t^k J^n f)^{(n)}$, for all k, so that $g(T_n)$ may be defined by $g(T_n) f \equiv (g J^n f)^{(n)}$, for any g with n continuous derivatives.

Theorem 12. Suppose Lebesgue measure is absolutely continuous with respect to v, with a bounded Radon-Nikodym derivative, $1 \le p \le \infty$, and v is finite. Then T_n , on L^p ([0,1],v), is C^n -scalar on [0.1].

Proof. Let m be Lebesgue measure. We're given that $\|\frac{dm}{dv}\|_{\infty}$ and v[0,1] are finite. Note that this implies that $Jf(t) \equiv \int_{0}^{t} f(s)ds$ is a bounded operator on $L^{p}([0,1],v)$, by the following calculation (for $1 \le p \le \infty$).

$$||Jf||_{p}^{p} = \int_{0}^{1} \left| \int_{0}^{t} f(s)ds \right|^{p} dv(t)$$

$$\leq \int_{0}^{1} \int_{0}^{1} |f(s)|^{p} ds \ dv(t), \text{ by Jensen's inequality,}$$

$$= \int_{0}^{1} \int_{0}^{1} |f(s)|^{p} dv(t) \frac{dm}{dv}(s) \ dv(s)$$

$$= \int_{0}^{1} v[0,1] |f(s)|^{p} \frac{dm}{dv}(s) \ dv(s)$$

$$\leq v[0,1] ||\frac{dm}{dv}||_{\infty} ||f||_{p}^{p}.$$

Let $Kg(t) \equiv \int_{t}^{t} g(s)ds$. For p>1, let q be such that $\frac{1}{q} + \frac{1}{p} = 1$; if p=1, let $q=\infty$. To apply Corollary 9, we calculate as follows, for any positive f in L^{p} , g in L^{q} .

$$\frac{k!}{(k+n!)} \int_{0}^{1} g(T_{n}^{k+n}f) dv = \frac{k!}{(k+n)!} \int_{0}^{1} g(\sum_{i=0}^{n} {n \choose i} (t^{k+n})^{(i)} f^{i} f) dv$$

$$= \int_{0}^{1} g(\sum_{i=0}^{n} {n \choose i} \frac{k!}{(k+n-i)!} t^{k+n-i} f^{i} f) dv$$

$$= \sum_{i=0}^{n} {n \choose i} \int_{0}^{1} t^{k} K^{n-i} (g(J^{i}f) dv)$$

(integrating by parts (n-i) times in the ith term)

$$= \int_0^1 t^{\mathbf{h}} \left(\sum_{i=0}^n {n \choose i} K^{n-i} (g(J^i f) dv) \right)$$

Since $(\sum_{i=0}^{n} {n \choose i} K^{n-i}(g(J^i f) dv)$ is positive, for all (f,g) in $(L^p)^+ \times (L^q)^+$, a determining set, T_n is C^n -scalar on [0.1], by Corollary 9.

Corollary 13. Suppose g is bounded and measurable on [0,1] and bounded below by a positive number. Then T_n , on $L^p([0,1], g \, dt)$, is C^n -scalar on [0,1], when $1 \le p \le \infty$.

References

- 1. N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators on a Hilbert Space, (Ungar, New York, 1961).
- 2. H.R. Dowson, Spectral Theory of Linear Operators, Academic Press (1978).
- 3. N. Dunford and T. Schwartz, Linear Operators, Part III, Wiley-Interscience (1971)
- 4. S. Kantorovitz, "The C^* -Classification of Certain Operators in L_p ", Transactions AMS, 132 (1968), 323 \sim 333.
- 5. S. Kantorovitz, "Characterization of C"-Operators", Indiana Univ. Math J., 25(1976), #1, 119~133.
- 6. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Part II, (Academic Press, 1975).
- 7. H. Schaefer, "A Generalized Moment Problem", Math. Annalen 146(1962), 326~330.
- 8. J.A. Shohat and J.D. Tamarkin, *The Problem of Moments*, AMS Math Surveys, Number 1 (1943).

Department of Mathematical Sciences University of Tulsa. Tulsa, Oklahoma, (918) 592—6000, U.S.A.