A Study on Interpolating Sequences

by In-seon Hwang

1. Introduction

Let H^{∞} be the Banach algebra of bounded analytic functions on the unit disc D in the comlex plane. We denote by $M(H^{\infty})$ the set of complex homomorphisms of H^{∞} . $M(H^{\infty})$ is called the maximal ideal space of H^{∞} . It is well known [5, p. 268] that $M(H^{\infty})$ is a compact Hausforff space with respect to the weak star topology, and $\|m\| = m(1) = 1$ for each complex homomorphism m in $M(H^{\infty})$.

Writing

$$\hat{f}(m) = m(f), f \in H^{\infty}, m \in M(h^{\infty}),$$

re have a homomorphism $f \to \hat{f}$ from H^{∞} into $C(M(H_{\iota}^{\infty}))$, the algebra of continuous complexalued functions on $M(H^{\infty})$. This homomorphism is called the Gelfand transform. Let \triangle be he set of point evaluations, that is, the complex homomorphisms m_{λ} in $M(H^{\infty})$ defined by $i_{\lambda}(f) = f(\lambda)$, and let Z be the indentity function on D. Then it follows a theorem [4, p. 160] hat \hat{Z} maps \triangle homeomorphically onto D.

A function of the form

$$B(Z) = Z^{\frac{1}{2}} \prod_{n=1}^{\infty} \frac{|Z_n|}{|Z_n|} \frac{|Z_n - Z|}{1 - \overline{Z}_n Z}$$

s called a Blaschke product. Here k is a nonnegative integer and $\{Z_n\}$ is a sequence in D such that $Z_n \succeq 0$ and $\sum (1-|Z_n|) < \infty$. B(Z) converges uniformly on compact subsets of D and s bounded in modulus by 1 and so is an element of H^{∞} with sup norm 1 [6, p. 333].

A sequence $\{Z_n\}$ in D is called an interpolating sequence if, for every bounded sequence of complex numbers $\{W_n\}$, there exists a function f in H^{∞} such that $f(Z_n) = W_n$ for every n.

A geometric characterization of interpolating sequences is expressed in terms of the pseudo-hyperbolic metric ρ , defined by

$$\rho(a,b) = \left| \frac{a-b}{1-\bar{a}b} \right|, \ a,b \in D.$$

Carleson's interpolation theorem [1] states that a sequence $\{Z_n\}$ in D is an interpolating sequence if and only if

$$\inf_{n}\prod_{k\neq n}\rho(Z_{n},Z_{k})>0$$

In this paper, we consider the hull of sequences in $M(H^{\infty})$, and investigate the relationship between the maximal ideal space of H^{∞} and interpolating sequences.

2. Main results

Let $S=\{m_k\}$ be a sequence of distinct points in $M(H^{\infty})$. By the hull of S, we mean the set of all points m in $M(H^{\infty})$ such that $\hat{f}(m)=0$ for every \hat{f} which vanishes on S.

Proposition 1. If $S=\{Z_k\}$ is a sequence of distinct points in D, then the following statements are equivalent.

- (a) hull $(S) = \bar{S}$.
- (b) If B is a Blaschke product with zeros $\{Z_k\}$, then every zero of \hat{B} on $M(H^{\infty})$ is in \bar{S} .

Proof. First, suppose that (a) holds, and that f=0 on S. Put f=Bg. If $\hat{B}(m)=0$, then $\hat{f}(m)=\hat{B}(m)\hat{g}(m)=0$. Hence m belongs to hull $(S)=\bar{S}$.

We now show that (b) implies (a). It is clear that $\bar{S} \subset hull(S)$. Suppose $m \in hull(S)$. Since B=0 on S, it follows that $\hat{B}(m)=0$; hence, $m \in \bar{S}$, by (b). Consequently, we have $hull(S)=\bar{S}$.

Let X be a compact Hausdorff space. For each x in X we define the complex function m_x on C(X) by $m_x(f) = f(x)$ for every f in C(X). It is immediate that m_x is in M(C(X)), the maximal ideal space of the Banach algebra C(X).

Lemma 2. Let φ denote the mapping from X to M(C(X)) defined by $\varphi(x) = m_x$. Then φ defines a homeomorphism from X onto M(C(X)), where M(C(X)) is given the relative weak start pology on $C(X)^*$.

Proof. See [2, p. 33].

Let l^{∞} denote the space of bounded complex sequences. With the norm $||x|| = \sup_{n} |x_n|$ and with the pointwise multiplication $(xy)_n = x_n y_n$, l^{∞} is a Banach algebra. The maximal ideal space of l^{∞} has the special name βN , the Stone-Čech compactification of the positive integers N. The Stone-Cech compactification βN can be

Lemma 3. Let X be a compact Hausdorff space and let $\tilde{\tau}: N \longrightarrow X$ be a continuous mapping. Then the mapping τ has a unique continuous extension $\tau: \beta N \longrightarrow x$. If $\tau(N)$ is dense in X and if the images of disjoint subsets of N have disjoint closures in X, then the extension $\tilde{\tau}$ is a homeomorphism of βN onto X.

Proof. See [3, p. 186].

Theorem 4. If $S=\{Z_k\}$ is a sequence of distinct points in the open unit disc D, then the following statements are equivalent.

- (a) S is an interpolating sequence.
- (b) Every idempotent sequence can be interpolated.
- (c) \bar{S} in $M(H^{\infty})$ is homeomorphic to the Stone-Čech compactification of the positive integers, and if B is the Blaschke product with zeros $\{Z_k\}$, then every zero of \hat{B} on $M(H^{\infty})$ is in \bar{S} .

Proof. First, we shall suppose that (a) holds and let $W = \{W_k\}$ be an idempotent sequence. Then $H^{\infty}|S=l^{\infty}$ and $W \in l^{\infty}$. Hence, there exists a function f in H^{∞} such that $f(Z_k) = W_k$ for all k. This proves that condition (a) implies (b).

We shall show that (b) implies (a). We note that $\hat{H}^{\infty}|S$ is a complex linear subalgebra of l^{∞} which contains every idempotent in l^{∞} . Let I be the clessed ideal consisting of those element f in H^{∞} such that $\hat{f}=0$ on S. Then $f+I \longleftrightarrow \hat{f}|S$ is an isomorphism between the quotient algebra

 I^{∞}/I and the algebra $\hat{H}^{\infty}|S$. The standard quotient norm on H^{∞}/I is a Banach algebra norm; hence $\|\hat{f}|S\| = \|f+I\|$ is a Banach algebra norm on $\hat{H}^{\infty}|S$. Consequently, we have $\hat{H}^{\infty}|S=l^{\infty}$. Hence (b) implies (a).

We now prove that (a) implies (c). Since $H^{\infty}|S=l^{\infty}$, it follows that every bounded function on the sequence S is the restriction to S of a continuous function \hat{f} ; hence each Z_k is isolated rom the points Z_i , j = k. In other words, S is discrete as a topological subspace of $M(H^{\infty})$. Therefore, S is homeomorphic to the positive integers. Each bounded function on S has a coitinuous extension to \bar{S} , by (a). The functions \hat{f}, f in H^{∞} , separate the points of \bar{S} , since they separate the points of $M(H^{\infty})$. Since S is dense in \bar{S} , it follows from Lemma 3 that \bar{S} is homeonorphic to the Stone-Čech compactification of the positive integers. For any m in the hull of 5, the mapping $\sigma: \hat{f}|S \to f(m)$ defines a complex homomorphism of the algebra $\hat{H}^{\infty}|S$. But $\widehat{H}^{\infty}|S=l^{\infty}$, which is isomorphic to the algebra $C(\bar{S})$ of all continuous functions on \bar{S} . Therefore, τ belongs to the algebra $C(\bar{S})$. Hence, by Lemma 2, σ is evaluation at a point of \bar{S} , that is, m is in \bar{S} . We conclude that $\bar{S}=hull(S)$. So, by Proposition 1, every zero of \hat{B} on $M(H^{\infty})$ is in \bar{S} . To prove that (c) implies (b), let I be the closed ideal consisting those elements f in H^{∞} such that $\hat{f}=0$ on S. Then $f+I \longleftrightarrow \hat{f}|S$ is an isomorphism between H^{∞}/I and $H^{\infty}|S$. Hence $\hat{H}^{\infty}|S$ is a commutative Banach algebra, using the norm inherited from $\hat{H}^{\infty}/I.$ It is immediate that every complex homomorphism of $\hat{H}^{\infty}|S$ is evaluation at a point of the hull of S. Since hull $(S) = \bar{S}$ and \bar{S} is the stone-Čech compactification of the discrete countable space S, the maximal ideal space of $\hat{H}^{\infty}|S$ is the totally disconnected space \bar{S} . By the theorem of Shilov, $\hat{H}^{\infty}|S$ contains every idempotent continuous function on \bar{S} . Hence, we have (b).

REFERENCES

- 1. L. Carleson, An interpolation theorem for bounded analytic functions, Amer. J. Math. 80 (1958), 921~930.
- 2. R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- 3. J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- 4. K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.
- 5. W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- 6. W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.