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1. Introduction

Let # denote the Fourier transformation; for L'(R%, f(&)=Ff(&) =_[R"f (%) e-2xixtdy, EeRn,
t is well known that f can be obtained from f by the inverse transformation #-! under some
.ypothesis on £, here (F-lg) (x) =Fg(—x).

Now we decompoes f so that

F@=0+&) —r(©))+ils* () —s(€)]

where 7+ (&) =max (Re(f), 0).

Here we consider #-!(»+) and ask whether F-1(*)=L!(R") when f satisfies some regularity
onditions. The answer depends on the space dimension #: if =2 then mild conditions on f
ssures that F-'(r*)& L!(R"), while if #=3 then F-1(»+)&L!(R") in general. In what follows
ve maintain the notation 7+ for the positive part of f and r denotes the real part of f.

2. Main results

Proposition 1. If x— 1+ |x])f(x) is in L2(RY) then F-1(rt)&L'(RY) and
HF-1 ) s g ||, (ansed) 1f @) f2ax] .
Proof. From the hypothesis we know that
FELNL2, so that fEC, and r=Re(f)EC, and f=L? and r*€L2. Let D={(=R|r(§)>0}.
“hen r+=X,r where X, is a characteristic function on D. In distribution sense,
(r+)’=(Xp) 'r+Xpr' and
=0 on which Xp’>0. Hence
(r*)'=Xpr’.
Jsing this equality and Cauchy-Schwarz inequality and Plancherel theorem,

[7r o0 1an=(| a+amee)-1an] [ a+am09 1710 |t
=717 [SR (1+4 z2x2) | F-1r+| zdx] g
n the other hand,
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[ (1717 2tz Foire )
=[ (1F-r+ P+ |2 7ixF -1+ 19 da
=[ (Fre 2 +1F ) 19 de
=[ Uris+1 e des[ (r@ 1+ 17 @) 1948
SRUIGIEAFACIRES
=[ (1f () 12 | —2mixf (x) |) d

=[ Q+4m22) |f (x) |%dx

combining these two inequalities, we obtain the required result. (Q.E.D.)

Before considering the two dimensional case, we need some lemma, due to M, Cowling.
Lemma 2. Suppose that r : R—R is in C*(R) and that r and r<C,(R). If

u(x) =J.Rf + (&) etri=tdE, then
|4(3) | S gagr 17" (©) 18
Proof. Let D={¢=R|r(§) >0}, which is open in R. Then »(x) =JDr (&) ei*d§,

We may write; D———UXI,., I.=(a., b)), I)s are disjoint.
We assume that I,’s are finite intervals for a moment.

Then u(x) =3 [, 7 e=id.
Integration by parts, together with the fact that
7 (a,) =0=r(b,),
shows that

u (x) = % (27Eix) _IJI 7’ (&) ehixade

=—3 (2rin) 2| (§) exint

b’l »
So
u@) S @20 (17 @) 1+17 @) 1+ 17 @) lag]

Now it is enough to show that
17" @) |+ 17" @) | =3[ 17 @) 1ae.

Since 7(a,) =0 and r(a,+¢) >0 for small ¢>0, 7' (a,)=0. Similarly ' (5,) =0.
If 7'(2,) =0, then put a@,’=a, and otherwise, put a,’=sup {ESR|E<a,, ' (§)=0}.
Similarly if 7’ (b,) =0 then, put &,’=4, and otherwise, put b,.';——inf s R|E>h,, 7' (§)=0}.
Furthermore, there exists a number c¢.& (@,, 5, such that r'(c,) =0 by Rolle’s theorem. Let
I./=(a)’, 5,). By construction I,’s are disjoint intervals and so

P =" @ ds=—["r @ a,

an
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217" @) 15[ 17 @) 1d+[ 717" €) 146

ilarly,
217 6 15[ "1 @ 1+ [ 17 @) 1.

m these two inequalities,

u(@) | @rn) =% (] 1 @ 16+ 177 @) 18]

= Qe[ L[ I ©1ae + [ 177 € 1ag]

=gt [, 17" ©) 146,
ch is the required result,
ut if some 7, is infinite, the above arguments no longer make sense, thus a slight modi-
tion is needed, but; since r and »’ are in C,(R) the technique used above is valid for each
. (Q.E.D.)
low we consider the case when #=2,
'roposition 8. Swuppose that the functions (x, y)—— (1+22+9%)f(x, ), aax (xzf (x, y)) and

;,‘(yzf (%, y)) are in L*(R?).
m F-1(r*)ELY(R?) and
1F -1 (rt) e =2{{f1l 2+ 6ll2%f + aax (2*f} ||L=+6|ly2f+%(yzf) flea.

Proof. We may devide R? into 5 regions;

N ¥4 =x
\\\ m //’
AN 1 e
) -
J\ 1 1
—1! El x
S D
v ~,
- vV y=—x

the region I, Cauchy-Schwarz inequality gives
1 r1 1 rl 1
(L1704 @, 9 ldwdy = 2U_1j_1|7—1 (r*) 12dxdy)
=2||r+lles = 20| Flle=2l1fl.2.

>w we shall show that in the region I

[T 19104 (2, 9) dndy = 8llatf +—2— (a2F) .

7 symmetry analogous estimations hold for the regions I ~YV, whence the theorem follows.

)serve that
ITJ'; |F-1(r*) (x,9) |dxdy
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<[Tent{[" 1710 ) 2y

IIA
Sy
- 8

)

&

[¥ 1%

[S:, |F=2(r) (x,9) | zdy] Tay
=.r: (2x)-'i‘ U' :.lu (%, 7) lzdv]%'d‘x’
where u(x,7) =J:°r+ (&, 7) e2xizt e,

The hypotheses of the theorem imply that xf&L!(R? and f<L!'(R?), so f and a;ae FfeCo(RY),
that is,  and »’'&C,(R%. Then by lemma 2

Julz,7) |= 875:3-;2 Jn‘ aa;z 4 (é, 7) ld&.

So

L]

Sy
oy

[ 177260 (.9 1y
[ e e |aef s
.327 [.(3)anf |14 | g 7;)] ag)t
by the Cauchy-Schwarz inequality and
["n+ame-ae=1,
Thus using the Plancherel theorem
[ 1771 5.9 1yas

T?rz—[.‘.mmdn ® \1+47L'262 \ aez f(E 77)! E

= 47;2 [J.mmdﬂj | (142 zi&) 362 F&, 7 | de].;.

=3[0+
as required. (Q.E.D.)
Remark 1. In proposition 1 and proposition 3 rapidly decreasing functions satisfies the hy-
pothesis. But we should note that it is milder condition in growth and regularity than that

JIA

A

=

% )xzf (x, ) dydx] z

of rapidly decreasing functions.

Remark 2. Here we consider only the positive part 7+ of f(&)=[r*(&)—r= (&) I +ils* (&) —s—(£)].
But other three parts can be considered by the same criteria.

Remark 3. For the case »=3, a useful criterion did not be presented here. If f=L!(R")
and f is radial then f is continuously differentiable on R~ {0}; »* will be continuously
differentiable only if =0 or if the zeroes of r are of order=2 and so, in general,
F-1(r+) &§LM(R"). ((3], p.35).
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