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1. Introduction
A closed subspace M of a Banach space E is said to have the z-ball (strong n-ball) property
, whenever B,,--,B, are closed balls in £ with MNB:xQ for each 7, and int ﬁB,&;Q

élB,-#Q), then we have Mﬂ@lBs#Q.

Alfsen and Effros [1] showed that a subspace with 3-ball property actually has the »-ball
roperty for all », and they called such subspaces M-ideals.

Why should this definition be less natural that the previous definition? Th: main reason is
1e following useful characterization of M-ideals: M is an M-ideal in E iff its annihilator, M°,
s an L-summand in E*. This definition does not characterize subspaces with the strong z-ball
roperty. It is not even whether the strong 3-ball property implies the strong #-ball property

or higher values of =.
To obtain the duality theorem, it is necessary to assume interior intersection. But why

hould we assume ﬁ int B>x? Why not assume that M0Oint Bix@? This leads us to the
i=1

iossibility of defining the n-ball property in several, not necessarily epuivalent, ways.
In this note we examines the relationship between these definitions. We give positive results

vherever possible, and counterexamples otherwise.
In section 2, we introduce some preliminaries which are necessary to explain the theorems.

In section 3, we will give the main theorems. In the following, Banach space is denoted E,
Jlosed balls in E are denoted B(zy,7,) =B, -, B(z,, 7.,)=B, The dual space of E is written
7*, If X is a compact, Hausdorff space, let C(X, E) denote the supnormed Banach space of

ontinuous functions from X to E.
The terminology and notation used in this note will be adopted [3], (8], and [14].

2. Preliminaries

Definition 2.1. Let M be a subspace of the Banach space E and n=N.
(1) We say that F has the n-ball property for oper balls if for every family V(x,, r),---,

V(z,, 7.) of open balls such that QV(x.., r)x@ and MO\ V(z, r)x0 (@l i1, n}) the
intersetion M0 Q;V(Zi’ 7:) is non-empty.

(2) M is said to have the n-ball property for closed balls if MﬂiQ B(x:,, r)x@ for every
family B(x(, 7)), -, B(2,, 7.) of closed balls (B(z, 7)={y|y<E, l|lx—»l|=r fcr x=E and r=0)
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such that it _(i]LB(xi, r)Xx@ and MONB(x, rdx@(all i={l, -, 7).

Definition 2,2, Let £ de a Banach space and a closed subspace M of E has strong n-ball
property if, for all closed balls B, -, B,, the assumptions MNB:x for each i, and -61 B
imply that MN (les#Q.

Definition 2.3. Let E be a Banach space and M a closed subspace of E. M is called an M-ideal
if M°, the annihilator of Min E*, is an L-summand of E*. This means that there is a projection
P:E*—M° satisfying the identity ||fl|=|pfll+If—2fl.

Defirition 2.4. Let E be a Banach space and a closed subspace M of E has the medium n-ball
property in E if, for all closed balls By, -, B., the assumptions -61 B and MNintB:>x for
each 7, imply that MN ﬁlB.-#Q.

Theorem 2.5. Let M be a closed subspace of the Banach space E. Then the following are
equivalent:

(1) M is an M-ideal.

(2) M has the 3-ball property for open balls.

(3) M has the n-ball property for open balls for every n<=N.

Proof. The proof may be found in [1].
Proposition 2.6. Let Vx;, 7)), i=1,-, n be a family of n open balls in the Banach space
E such that there is an X, in iﬂ Vx:, 7:). Then there exists a é in (0, 1) such that, for ¢ in
0, 1] and x in .-Qx V(x:, rite), the intersection V(x, de)) iDI Vix:, ri+0¢e) is non-empty(we
may take 6:—“(1+——27m_ﬁ—)-1, where M=max{r;|i=1, - n}, m=min {r—|lx;—x,}} | =1, ---, n}).
Proof. The proof may be found in [3].

Proposition 2.7. Let M be a closed subspace of the Banack space E and n&<N.
(1) If M satisfies the (n+1)-ball property for open balls, then M satisfies the n-ball
property for closed balls.
(2) The n-ball property for closed balls implies the n-ball property open balls,

Proof. The proof may be found in [3].

Theorem 2.8. Let M be a closed subspace of the Banach space E and v:E—E/M the canonical
mapping onto the quotient. The following are equivalent:

(1) M is an M-ideal.

(2) M satisfies the 3-ball property for open balls.

(3) M satisfies the n-ball property for oper balls(all n=N),

(4) M satisfies the 3-ball property for closed balls.

(5) M satisfies the n-ball property for closed balls(all n=N).

6) If Vi, V. are open balls such that _(j Vixw, Lthen v(NB)=Nv(B).
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7Y If By, -, B, are closed balls such that int ﬁlB;#@, then v({]B;)*—-(]v(B{)
Proof. (1)~ (5) are equivalent by th.2.5. and prop.2.7. The equivalences (3)< (6) and
y&>(7) are easily verified.

The following is the natural definition to work with in order to prove the duality theorem.
finition 2.9, Let E be a Banach space and a closed subspace M of E has the weak n-ball

operty in E if the conditions #n¢ _riBé;@ and MQint Bix@ for each i, imply that
n 0 Bx2.

efinition 2.10. Let {x;, 25, +} CE and {fi, f5, -} CE*. We say that (z., f.) is a Markusévic
ists for E if fn(x,) =0n. the linear span of [x,} is dence in E, and {f.} separates points of E.

efinition 2.11. A Banach space F is strictly convex if every norm one vector is an extreme
dint of the unit ball.

efinition 2,12. A Banach space E is locally uniformly convex if the conditions |jx.]|—|x]|=1
ad ||x,+x{|—2 imply that x,—x.

efinition 2.13. A Banach space E is uniformly convex if the conditions (Ix,.l[——uy,.n 1 and
taty:ll—>2 imply that x,—y,—0.

3. Main Theorems
It will evident that the following fails if we do not assume interior intersection.

'roposition 3.1. Suppose that M has the weak (n+1)-ball property in E. Then M has the
-ball property in E.

Proof. The proof may be found in [10].
orollary 3.2. The weak n-ball property is equivalent to the n-ball property.
Proof. The proof may be found in [14], [15].

We will show that the n-ball property does not imply the medium n-ball property, and that
he medium n-ball property does not imply the strong n-ball property.

ixample 3.8. The n-ball property does not imply the medium n-ball property.
Proof. The proof may be found in {3], [7], [10] and [13].
>roposition 3.4. For each n, Y° has the medium n-ball property in C(X, E).

Proof. Suppose that f& ﬁlB( fi-riyand that Yo int B(f:, 7))@ for each 7. Then
Ifi|<r;, for each yeY, i=n. Let Z={x=X | {|f:(x)||=r; for at least ocne {}. Then Z is
:losed, and disjoint from Y.

We may suppose that Zx @, since otherwise 0=YoN -61 B(f:, ;). Then there is a continuous

lunction £2:X—[0,1] with A(Y)={0} and %2(Z)={1}.
Define g& Y by g(x) =k(x) f(x), for x=X.
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We claim that g& ["]l B(f;, r;). First note that f(x)ef]1 B(fi(x),r;) for each x&X, If x=Z,
then g(x)=f(x) & ﬁlB(f; (x),7;), as required. If x=Z, then by definition 0= ﬁB( fi(x), 7)),
and so again we have r (v )=k (x)f(x)+ (1-A(x)), OE'Q B(fi(x),r).

Theorem 3.5. Let X be a space in which sequences suffice (e.g. a metric space). Suppose that
the set of extreme points of the unit ball of E is not closed. Then the following are equivalent:
(1) Y is clopen
(2) Y?° has the strong n-ball property, for all n.
(3) Y° has the strong 2-ball property in C(X, E).

Proof. (1)=(2). Let Z=X/Y. If Z is closed then C(X, E) is the direct sum of ¥ and Z,
and ||f+gll=max{fll, ligl}, for f£Y?, g=Z°. Easy calculation establish the strong 7-ball
property.

(2)=>(3). Trivial

(3)=>(1). By hypothesis, there exist extreme points ¢ of the unit ball of E, and g, 5 =E with
a,—a, |lat+bl|=1, but #x0. Suppose that Y is not clopen; we will show that Y° fails the
strong 2-ball property.

Now we can find x,.&Y with x,»y<Y., Define a continuous map ¢ : X—[0,1] by setting
¢(Y)={0]|¢(x.)=1/n}; and then extending by Tietze's theorem.

Define %+, k-, C([0,1], E) by hi(l/n)=b+a, hs(0) =b+a, and by linear interpolation elsewh-
ere. Let f=h+o¢, g=h-o¢, and consider the balls B(f,1) and B(g,1). It is routine to verify
that 3 (f+£)EB(f,) NB(g, 1), that f~b—aSY°NB(f,1) and that g—b+a=Y°NB(g,1). But
if h&B(f,1)NB(g,1) then

h{x) EB(f(xa),1) NB(g(x,),1)
=B(b+a., 1) NB(b—a,, 1)
={b},
whence k(YY) *——11*1‘2 h(x,) =b=0. Thus B(f,1)NB(g,1) does not meet Y.

Corollary 3.6. The medium n-ball property does not imply the strong n-ball property.

Proof. The proof may be found in [14].
Theorem 3.7. Suppose that E is strictly convex(i.e. every norm one vector is an extreme point
of the unit ball), Then Y° has the strong n-ball property in C(X, E), for every n.

Proof. Suppose that fe ‘_(le( fir:) and that Y°NB(f,r)>x, for i=n Define a set
valued map” ¢ : X/26—¢ by ¢(x)=irle( fi(x),r:). Clearly each ¢ (x) is closed and convex;

we claim that ¢ is lower semi-continuous. If K is a closed subset of E, we must show that
{x=X|¢ (x) EK} is closed. So let x,—~x in X, and suppose ¢ (x,) =K. We consider two cases,
if ¢(x)={f(x)} is a singleton, then

f@)—fx)Ed(x,) =K, and so ¢ (x) EK.
Otherwise, suppose ¢ (x) contains two distinct points, @ and 5. For the time being, fix
A=(0,1). Now
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la—fi(x) |=r; and |Ib—fi(x) |=7,, for i=1,2,:, 2.
- strict convexity, ([da+ (1—A)d—f;(x)||<ri, for each i. Hence |lla+ (1—2)b—f:(x)||<r:,
r all sufficiently large a. But then la+ (1—2)4=¢ (x,) SK. Since K is closed, it follows that
b<K. This proves that ¢(x)SK, as required. Clearly 0e¢(y) whenever y=Y. Define
: X-25 by ¢o(x)=¢(x), for x&Y, and by ¢o(x)=1{0}, for »<Y. It is routine to verify
at is lower semicontinuous. By Michael's selection theorem [12] there is a continuous map

1 X—FE with g(®x) &¢o(x) for all x&X. Clearly g&¥Nn ﬁ B(f, 7). We remark that if E is

rictly convex, then no nontrivial subspace of E has ever the 2-ball property. To see this,
ppose {0} >M>E, and choose x&F with d(x, M)=1.

By adding an element of M. we may suppose |x|>1. By [15, theorem 3], we may suppose
at MNB(x, 1)x@. By strict convexity, MNB(x,1) contains only one point. Let us write
MQOB(x,1)=1{y}. Again by strict convexity, |zl|<l{yll+llx—yll=llyll+1. Choose r so that
Al ~1<r <yl

Then B(0,7) NB(x,1) has non-empty interior, MNB(0,7) is obviously non-empty, but
INB(x,1) is non-empty and disjoint from B(0,7). Thus theorem 3.7 say that if E is strictly
mvex, then every M-ideal in C(x, E) has the strong n-ball property for all ». Even for the
jecial case £=C, this seems to be new.
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