유기산용액에서 우라늄과 바나듐의 화학종에 관한 연구

Chemical Species of Uranium and Vanadium in Organic Acid Media

  • 차기원 (인하대학교 이과대학 화학과) ;
  • 유공식 (군산대학교 화학과) ;
  • 김종훈 (인하대학교 이과대학 화학과)
  • Ki-Won Cha (Department of Chemistry, Inha University) ;
  • Cong-Sik Yu (Department of Chemistry, Kusan National University) ;
  • Jong-Hun Kim (Department of Chemistry, Inha University)
  • 발행 : 1985.12.20

초록

옥살산과 아세트산 용액의 농도변화에 따른 우라늄과 바나듐의 음이온교환수지로부터의 용리거동 및, UV및 스펙트럼 변화로부터 이들 이온의 화학종과 평형관계를 연구하였다. 0.005~0.5M 옥산살산 용액속에서 우라늄과 바나듐은 각각 $UO_2(C_2O_4)_2^{2-}$, $UO_2(C_2O-4)_3^{4-}$$VO_2(C_2O_4)_2^{3-}$의 화학종으로 존재하고, 0.01~0.1M의 아세트산 용액에서 우라늄은 $VO_2(Ac)_2^0$, $UO_2(Ac)_3^{1-}$의 화학종으로 존재하며, 바나듐은 $VO_2^++2Ac^-=VO_2(Ac)_2^-$의 평형이 이루어짐을 확인하였다.

The chemical species formed by uranium and vanadium and their equilibria have been investigated in the various concentrations of oxalic and acetic acids by the ion exchange chromatography and UV-Vis spectrophotometry. Uranyl and vanadyl ions seem to be form the complex as $UO_2(C_2O_4)_2=$, $UO_2(C_2O_4)_3^{4-}$ and $VO_2(C_2O_4)-2^{3-}$ respectively in the concentration range of 0.005∼0.05M oxalic acid concentration. In the case of acetic acid the equilibria of $UO_2^{2+}+3Ac^-=UO_2(Ac)_3^-$ and $VO_2^++2Ac^-=VO_2(Ac)_2^-$ were existed individually according to the increase of acetic acid concentration.

키워드

참고문헌

  1. J. Chem. Soc. T. V. Arden;G. A. Wood
  2. J. Chem. Soc. T. V. Arden;Marion Rowly
  3. J. Chem. Soc. (A) W. P. Griffith;P. J. B. Lesniak
  4. J. Phys. Chem. v.60 C. F. Baes, Jr.
  5. Russ. J. Inorg. Chem. v.19 A. A. Lvakin(et al.)
  6. J. Inorg Nucl. Chem. v.35 C. Heitner-Wirguin;M. Gantz
  7. J. Inorg. Nucl. Chem. v.35 F. Preuss;J. Woitschich(et al.)
  8. J. Chem. Phys. v.21 Liewellyn H. Jones;Robert A. Penneman
  9. J. Chem. Soc., (A) W. P. Griffith;T. D. Wickin
  10. J. Chem. Soc., (A) W. P. Griffith
  11. J. Amer. Chem. Soc. v.35 Leo D. Frederickson(et al.)
  12. J. Chem. Soc. W. P. Griffith;T. D. Wickins
  13. J. Chem. Soc. W. P. Griffith;T. D. Wickins
  14. J. Amer. Chem. Soc. v.93 W. Robert Scheidt(et al.)
  15. J. Amer. Chem. Soc. v.93 W. Robert Scheidt(et al.)
  16. J. Inorg. Nucl. Chem. v.15 J. Magee;E. Richardson
  17. J. Inorg. Nucl. Chem. v.27 R. C. Paul;A. Kumar
  18. J. Chem. Soc. O. W. Howarth;R. E. Richards
  19. J. Chem. Soc. L. F. Larkworthy(et al.)
  20. Can. J. Chem. v.43 J. V. Hatton(et al.)
  21. Acta. Chem. Scand. v.10 F. J. C. Rossotti;Hazel Rossotti
  22. Acta. Chem. Scand. v.8 Sten Ahrland;Ragnar Larsson
  23. J.C.S. Dalton Ronald N. Sylva;Malcolm R. Davidson
  24. J. Inorg. Nucl. Chem. v.36 Florin T. Bunus
  25. J. Inorg. Nucl. Chem. v.18 D. Banerjea;K. K. Tripathi
  26. J. Korean Chem. Soc. v.28 K. W. Cha;J. S. Choi
  27. J. Inorg. Nucl. Chem. v.36 Nobutoshi Kiba;Tsugio Takeuchi
  28. J. Chem. Soc. J. Sutton
  29. Rev. Roun. Chem. v.18 Mavrodin T. Maria
  30. Russ. J. Inorg. Chem. v.20 M. G. Kuzina;A. A. Lipovskii
  31. J. Korean Chem. Soc. v.28 K. W. Cha;J. H. Kim
  32. J. Amer. Chem. Soc. v.79 C. Li. Norman(et al.)
  33. Chem. Revs. v.61 Kotra V. Krishnamurthy(et al.)
  34. Chem. Revs. v.61 Kotra V. Krishnamurthy(et al.)
  35. C. A. v.52 Kotra V. Krishnamurthy(et al.)
  36. Acta. Chem. Scand. v.5 S. Ahrland
  37. ModernMethods for the Separation of Rarer Metal Ions J. Korkish
  38. Bull. Chem. Soc. Jap. v.37 D. N. Sathyanarayana;C. C. Patel
  39. J. Inorg. Nucl. Chem. v.27 R. C. Paul;A, Kumar
  40. J. Inorg. Nucl. Chem. v.6 Robert I. Walter
  41. J. Inorg. Nucl. Chem. v.3 D. P. Graddon
  42. Bull. Inst. Basic. Sci. Inha Univ. v.6 K. W. Cha;J. H. Kim