초록
트리메틸렌 디라디칼의 헤테로원자 유사체에 관한 두 비결합 궤도함수간의 궤도 상호 작용을 MINDO/3 및 STO-3G 방법으로 조사하였다. 그 결과 트리메틸렌 디라디칼에서 알려진 것 처럼 상당한 시그마 방향족성 안정성이 있는 구조는 준위 순서가 뒤바뀌어 $n_-$가$n_+$보다 낮게 나타났다. 고립전자쌍 궤도(LPO)는 vicinal 트란스 $n^{-{\sigma}^*$ 상호작용과 수소결합으로 인한 전하분산에 의해서 안정화 됨을 알았다. 다른 헤테로 원자계인 N과 O에서 O의 LPO기여 $n_O$는 항상 낮은 준위(${\varepsilon}_l$)에 크게 나타나며 N의 LPO기여 $n_N$은 높은 준위(${\varepsilon}_h$)에 크게 나타난다. 즉 다음과 같이 쓸 수 있다.$n_{\pm}$(lower) = $n_O{\pm}{\lambda}_Nn_N.\;n_{\pm}(higher)\;=\;n_N{\pm}{\lambda}_On_O$. 여기서 ${\lambda}_i$< 1.0
Orbital interactions between two nonbonding orbitals have been investigated for heteroatom analogues of trimethylene diradical using MINDO/3 and STO-3G methods. The results showed that the conformers in which significant ${\sigma}$-aromatic stabilization is involved exhibited level order reversal to $n_-$ below $n_+$ as it was found for trimethylene diradical. Lone pair orbitals (LPO) were found to be stabilized by charge dispersion accompanying vicinal trans $n-{\sigma}^*$ interaction and hydrogen bonding. In systems with different heteroatoms, N and O, the contribution of the LPO of oxygen, $n_O$ was always greater in the lower level whereas that of nitrogen, nN, was greater in the higher level as can be expressed as : $n_{\pm}$(lower) = $n_O{\pm}{\lambda}_Nn_N.\;n_{\pm}(higher)\;=\;n_N{\pm}{\lambda}_On_O$. where ${\lambda}_i$< 1.0