The Structure and Energy of D-Sorbitol from an Empirical force-Field

Empirical Force-Field 방법에 의한 D-Sorbitol 의 구조와 에너지에 관한 연구

  • Park Young Ja (Department of Chemistry, Sookmyung Women's University)
  • 박영자 (숙명여자대학교 이과대학 화학과)
  • Published : 1985.04.20

Abstract

Empirical force-field method has been applied to D-sorbitol, the crystal structure of which has been studied by the single crystal X-ray and neutron diffraction analyses. The calculated C-C bond lengths agree with those observed within 0.009${\AA}$. The C-O bond lengths show a larger deviation of 0. 023${\AA}$. The calculated C-C-C and C-C-O valence angles agree with those observed within $2.3^{\circ}$ and $1.9^{\circ}$respectively. Because torsion angles are influenced by packing forces, they show considerably flarger r. m. s. deviations. Calculations of the conformational energies of the model compound at selected C(1)-C(2)-C(3)-C(4) torsion angles made with the program MMI, produced result that the prediction of the observed preferred conformation of the carbon chain appeares to be less satisfactory.

Empirical force-field 방법을 중성자 회절 방법으로 분자구조가 밝혀진 D-sorbitol, CH_2OH\;(CHOH)_4\;CH_2OH$에 적용하여 비교 연구하였다. C-C결합 길이는 계산값과 실험값이 0.009${\AA}$ 내에서 C-O 결합 길이는 0. 023${\AA}$내에서 일치하는 좋은 결과를 얻었다. C-C-C 와 C-C-O 결합 각도는 각각 $2.3^{\circ}$$1.9^{\circ}$이내에서 일치하였으나 crystal packing force의 영향을 많이 받고 있는 torsion angle은 상당한 차이가 있었다. C(1)-C(2)-C(3)-C(4) torsion angle을 규칙적으로 변화시키면서 steric 에너지를 연구한 결과 분자의 최저 에너지는 ${\phi}$=+$90^{\circ}$부근에서 나타나 회절법에 의한 결정 구조와는 다른 결과를 얻었다. 그러나 C-O, O-H, O-lone-pair dipole들 간의 상호작용을 무시하면 ${\phi}$=-$60^{\circ}$부근에서 최저에너지를 나타내어 결정구조와 일치 하였다. Empirical force-field 방법의 dipole 상호작용에 관한 에너지항을 개선하면 더 좋은 결과를 얻을 수 있을 것으로 예측 한다.

Keywords

References

  1. ACS Monograph 177 Molecular Mechanics U. Burkert;N.L. Allinger
  2. Advances in Physical Organic Chemistry v.13 N.L. Allinger
  3. Ann. Rev. Phys. Chem. v.19 J.E. Williams;P. J. Stang;P. von R. Schleyer
  4. J. Amer. Chem. Soc. v.104 G. Wipff;P. Weiner;P. Kollman
  5. J. Amer. Chem. Soc. v.103 W.L. Duax;J.F. Griffin;D.C. Rohrer
  6. J. Amer. Chem. Soc. v.104 S. Profeta;P.A. Kollman;M.E. Wolff
  7. J. Amer. Chem. Soc. v.106 S.J. Weiner;P.A. Kollman;D.A. Case;U.C. Singh;C. Ghio;G. Alagona;S. Profeta;P. Weiner
  8. J. Amer. Chem. Soc. v.104 J.M. Blaney;P.K. Weiner;A. Dearing;P.A. Kollman;E.C. Jorgeson;S.J. Oatley;J.M. Burridge;C.C.F. Blake
  9. Carbohydrate Research v.74 G.A. Jeffrey;Y.J. Park
  10. J. Comput. Chern v.1 G.A. Jeffrey;R. Taylor
  11. Biopolymer v.11 P.R. Sundarajan;R.H. Marchessault
  12. Acta Cryst. v.B39 L.M.J. Kroon-Batenberg;J.A. Kanters
  13. Acta Chemica Scandinavica v.A31 K. Kildeby;S. Melberg;K. Rasmussen
  14. Tetrahedron v.24 P.R. Sundararajan;V.R.S. Rao
  15. J. A mer. Chem. Soc. v.104 W.K. Olson
  16. Carbohydrate Research v.14 G.A. Jeffrey;H.S. Kim
  17. Acta Cryst. v.B24 F.D. Hunter;R.D. Rosenstein
  18. Acta Cryst. v.B24 H. Berman;G.A. Jeffrey;R.D. Rosenstein
  19. Acta Cryst. v.B24 H.S. Kim;G.A. Jeffrey;R.D. Rosenstein
  20. Acta Cryst. v.B24 H. Berman;R.D. Rosenstein
  21. Acta Cryst. v.B25 H.S. Kim;G.A. Jeffrey;R.D. Rosenstein
  22. Acta Cryst. v.B25 H.S. Kim;G.A. Jeffrey
  23. Acta Cryst. v.B27 Y.J. Park;G.A. Jeffrey;W.C. Hamilton
  24. Acta Cryst. v.B28 N. Azarnia;G.A. Jeffrey;M.S. Shen
  25. J. Chem. Soc., Perkin II K. Nimgirawath;V.J. James;J.A. Mills
  26. Quantum Chemical Program Exchange, No318 Chemistry Department, Indiana University
  27. J. Amer. Chem. Soc. v.98 N.L. Allinger;D.Y. Chung
  28. Tetrahedron v.33 U. Burkert
  29. Carbohydrate Research v.85 U. Burkert;A. Gohl;R.R. Schmidt
  30. Acta Cryst. v.B38 F. Mo
  31. Israel J. Chem. v.20 N.L. Allinger;S. Chang;D.H. Glaser;H. Honig
  32. J. Comput. Chem. v.1 U. Burkert