DOI QR코드

DOI QR Code

Crystal Structure of Dehydrated Partially Ag$^+$-Exchanged Zeolite A, Ag$_{4.6}Na_{7.4}$-A, Treated with Hydrogen at 350${^{\circ}C}$

  • Kim Yang (Chemistry Department, Pusan National University) ;
  • Seff Karl (Chemistry Department, University of Hawaii)
  • 김양 (부산대학교 화학과) ;
  • Published : 1985.08.20

Abstract

The crystal structure of The crystal structure of $Ag^+$-Exchanged Zeolite A, $Ag_{4.6}Na_{7.4}-A$, dehydrated, treated with $H_2$, and evacuated, all at $350^{\circ}C$, has been determined by single crystal x-ray diffraction methods in the cubic space group Pm3m at $24(1)^{\circ}C;$ a = $12.208(2)\AA.$ The structure was refined to the final error indices R1 = 0.088 and R2 (weighted) = 0.069 using 194 independent reflections for which II_0$ > $3{\sigma}(I_0)$. On threefold axes near the centers of 6-oxygen rings, $7.4 Na^+$ ions and $0.6 Ag^+$ ions are found. Two non-equivalent 8-ring $Ag^+$ ions are found off the 8-ring planes, each containing about $0.6 Ag^+$ ions. Three non-equivalent Ag atom positions are found in the large cavity, each containing about 0.6 Ag atoms. This crystallographic analysis may be interpreted to indicate that $0.6 (Ag_6)^{3+}$ clusters are present in each large cavity. This cluster may be viewed as a nearly linear trisilver molecule $(Ag_3)^0$ (bond lengths, 2.92 and 2.94 $\AA;$ angle, $153^{\circ})$ stabilized by the coordination of each atom to a Ag^+$ ion at 3.30, 3.33, and 3.43 $\AA$, respectively. In addition, one of the silver atoms approaches all of the 0(1) oxygens of a 4-ring at $2.76\AA.$ Altogether $7.4 Na^+$ ions, $1.8 Ag^+$ ions, and 1.8 Ag atoms are located per unit cell. The remaining $1.0 Ag^+$ ion has been reduced and has migrated out of the zeolite framework to form silver crystallites on the surface of the zeolite single crystal.

Keywords

References

  1. J. Am. Chem. Soc. v.99 Y. Kim;K. Seff
  2. J. Am. Chem. Soc. v.100 Y. Kim;K. Seff
  3. Ber. Bunsenges. Phys. Chem. v.84 D. Hermerschimit;R. Haul
  4. Bull. Chem. Soc. Japan v.45 H. Tsutsumi;H. Takahashi
  5. Metal Microstructure in Zeolites H. K. Beyer;P. A. Jacobs;P. A. Jacobs(ed.)
  6. J. Chem. Soc. Faraday Trans. I v.72 H. K. Beyer;P. A. Jacobs;J. B. Uytterhoeven
  7. J. Phys. Chem. v.82 Y. Kim;K. Seff
  8. Metal Microstructure in Zeolites L. R. Gellence;R. A. Schoonheydt;P. A. F. Jacobs(ed.)
  9. 184th ACS Meeting, Division of Inorganic Chemistry, Abs. #71 G. A. Ozin;F. Hugues;S. Matter;D. Mclntosh
  10. J. Phys. Chem. v.82 Y. Kim;K. Seff
  11. J. Cryst. Growth v.8 J. F. Charnell
  12. J. Phys. Chem. v.88 K. Seff;M. D. Mellum
  13. J. Phys. Chem. v.76 K. Seff
  14. J. Am. Chem. Soc. v.100 W. V. Cruz;P. C. W. Leung;K. Seff
  15. J. Am. Chem. Soc. v.100 Y. Kim;K. Seff
  16. Acta Crystallogr. v.10 S. W. Peterson;H. A. Levy
  17. LP-76 Ottersen, T.
  18. UCLA LS4, American Crystallographic Association Program Library (old) No. 317 (modified) P. K. Gantzel;R. A. Sparks;K. N. Trueblood
  19. Ames Laboratory Fast Fourier C. R. Hubbard;C. O. Quicksall;R. A. Jacobson
  20. ORTEP, Report No. ORNL-3794 C. K. Johnson
  21. J. Phys. Chem. v.81 V. Subramanian;K. Seff
  22. Acta Crystallogr. v.2 D. W. Cruickshank
  23. Acta Crystallogr., Sect. A v.24 P. A. Doyl;P. S. Turner
  24. International Tables for X-ray Crystallography v.IV
  25. Acta Crystallogr. v.18 D. T. Cromer
  26. International Tables for X-ray Crystallography v.IV
  27. Handbook of Chemistry and Physics(55th Edition)
  28. Handbook of Chemistry and Physic(55th Edition)