DOI QR코드

DOI QR Code

Normal Mode Studies for Solids HF, HCl and Polyethylene According to the Pseudolattice Method

  • Chang, Man-Chai (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • John, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1985.04.20

Abstract

Normal modes of solids HF, HCl and polyethylene having the exciting spectrometric phenomena have been evaluated by taking the lowest temperature phase of these species in the solid. The solids HF and HCl have the same space group as C$_{2}{\nu}$, and polyethylene has a space group with D$_{2h}$. The normal modes were obtained by the valence force field with modified force constants and a quantitative description of the normal mode is adjusted by the potential energy distribution (PED). From the PED, the most fittable force constants are also obtained. We have intended to calculate the normal modes by using the smallest size of the model and the simple computational process. To remove the edge effects being occurred in constructing the single cluster model, different from the boundary condition being generally used up to now, the idea of pseudolattice method being successfully applied to MO calculations of solid was extended to normal mode analysis in order to give the same environment for all moecules in a chosen cluster. By using the above valence force field and boundary condition, we obtain the assigned frequencies and compare those results with the results obtained by others.

Keywords

References

  1. J. Chem. Phys. v.46 J. S. Kittelberger;D. F. Hornig
  2. J. Chem. Phys. v.51 R. Tubino;G. Zerbi
  3. J. Phys. C.;Solid St. Phys. v.7 P. J. Grout;J. W. Leech
  4. J. Phys. C.;Solid St. Phys. v.9 P. N. Ghosh
  5. J. Chem. Phys. v.25 S. Krimm;C. Y. Liang;G. B. B. M. Sutherland
  6. Chem. Phys. v.47 H. Takeuchi;M. Tasumi
  7. J. Amer. Chem. So. v.75 J. H. Hu;D. White;H. L. Johnston
  8. Nature v.217 E. Sandor;M. W. Johnson
  9. Nature v.223 E. Sandor;M. W. Johnson
  10. J. Phys. Soc. Japan v.28 S. Hoshino;K. Shimaoka;N. Niimura;H. Motego;N. Maruyama
  11. J. Phys. Soc. Japan v.32 N. Niimura;K. Shimaoka;H. Motegi;S. Hoshino
  12. Nature v.213 E. Sandor;R. F. C. Farrow
  13. E. Acta Cryst. v.B31 M. W. Johnson;E. Sandor
  14. Ann. Meeting of the Polymer Science Y. Chantani;Y. Ueda;H. Tadokoro
  15. Jpn. J. Appl. Phys. v.7 T. Seto;T. Hara;K. Tanaka
  16. Rep. Prog. Polym. Phys. Jpn. v.19 T. Yamamoto;H. Miyaji;K. Asai
  17. J. Polym. Sic. B v.6 A. Turner-Jones;A. J. Cobbold
  18. Chem. Phys. Lett. v.31 B. Borstnik;B. Azman
  19. J. Chem. Phys. v.53 H. B. Friedrich;R. E. Carison
  20. Chem. Phys. v.41 V. Schettino;P. R. Salvi
  21. J. Chem. Phys. v.46 M. Tasumi;S. Krimm
  22. J. Chem. Phys. v.70 M. Kobayashi
  23. Chem. Phys. Lett. v.70 A. Anderson;B. H. Torrie;W.S. Tse
  24. Chem. Phys. Lett. v.17 T. S. Sun;A. Anderson
  25. Can. J. Phys. v.55 J. E. Vesel;B. H. Torrie
  26. Chem. Phys. Lett. v.81 W. Kusmierczuk;A. Witkowski
  27. Chem. Phys. Lett. v.17 J. W. Fleming;G. W. Chantry;P. A. Turner;E. A. Nicol;H. A. Willis;M. E. A. Cudby
  28. Chem. Phys. Lett. v.17 J. W. Fleming;G. W. Chantry;P. A. Turner;E. A. Nicol;H. A. Willis;M. E. A. Cudby
  29. J. Phys. Chem. v.87 K. T. Noh;M. S. Jhon
  30. Bull. Korean Chem. Soc. v.5 S. H. Oh;M. C. Chang;M. S. Jhon
  31. Bull. Korean Chem. Soc. v.5 J. S. Kim;K. T. Noh;M. S. John
  32. Proc. Roy. Soc. London Ser. v.A220 P. W. Higgs
  33. J. Chem. Phys. v.33 H. Tadokoro
  34. J. Chem. Phys. v.35 T. Miyazawa
  35. J. Chem. Phys. v.38 T. Miyazawa;Y. Idequchi;K. Fukushima
  36. Biopolymers v.21 H. Kim
  37. J. Chem. Phys. v.55 W. D. Gwinn
  38. J. Chem. Phys. v.54 J. Tyson;H. H. Classen;H. Kim
  39. J. Chem. Phys. v.39 H. Boutin;G. J. Safford;V. Brajovic
  40. J. Chem. Phys. v.39 H. B. Friedrich;W. B. Person
  41. J. Chem. Phys. v.50 M. Ito;M. Suzuki;T. Yokoyama
  42. Lattice Dynamics and Intermolecular Forces G. Zerbi;S. Califano(ed.)
  43. J. Phys. C;Solid St. Phys. v.11 F. Bogani;V. Schettino
  44. J. Chem. Phys. v.50 R. Savoie;M. Pezolet
  45. J. Chem. Phys. v.23 D. F. Hornig;W. E. Osberg
  46. J. Chem. Phys. v.44 R. Savoie;A. Anderson
  47. Molecular Vibrations E. B. Wilson, Jr.;J. C. Decius;P. C. Cross
  48. Structure of Crystalline Polymers H. Tadokoro
  49. Chem. Phys. Lett. v.18 C. Wu;M. Nicol
  50. Chem. Phys. v.24 C. Wu;M. Nicol
  51. J. Chem. Phys. v.66 M. Kobayash;H. Todokoro
  52. J. Chem. Phys. v.47 D. E. Wiliams
  53. J. Chem. Phys. v.42 S. Krimm;M. Bank
  54. J. Chem. Phys. v.54 A. Warshel
  55. J. Chem. Phys. v.43 M. Tasumi;T. Shimanouchi
  56. J. Mol. Spectrosc. v.34 V. B. Carter
  57. Chem. Phys. Lett. v.1 G. D. Dean;D. H. Martin
  58. J. Mol. Spectrosc. v.8 R. F. Holland;J. R. Nielson
  59. Infrared Physics v.14 G. J. Davis;J. High
  60. J. Phys. C;Solid St. Phys. v.6 R. T. Harley;W. Hayes;J. F. Twisleton
  61. J. Chem. Phys. v.38 R. G. Brown
  62. J. Chem. Phys. v.47 R. F. Schoufele;T. J. Shimanouchi

Cited by

  1. Vibrational studies of hcn and dcn in matrix vol.34, pp.suppl22, 1988, https://doi.org/10.1002/qua.560340820