Abstract
The crystal structure of phlorizin, a ${\beta}$ -D-glucopyranoside of a flavonoid dihydrochalcone phloretin, has been determined by single crystal diffraction methods using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with Cu $K{\alpha}$ radiation from a crystal with space group symmetry $P2_12_12_1$ and unit cell parameters a = 4.9094 (2), b = 19.109 (1), c = 23.275 (4) $\AA$. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.047 for the 1697 observed reflections. The dihydrochalcone moiety is flat and fully extended. The glucose ring has the $^4C_1$ chair conformation and the conformation of the primary alcohol group is gauche-gauche. The crystal packing is dominated by an extensive hydrogen bonding pattern. There are one strong and two weak intramolecular hydrogen bonds in the phlorizin molecule.