Abstract
Normal modes of crystalline orthorhombic sulfur belonging to the space group $D_{2h}$-Fddd, have been evaluated by taking the lowest temperature phase in the solid. Normal modes are obtained by the valence force field with modified force constants and a quantitative description of the mode is adjusted by the potential energy distribution. Since the full crystal system of orthorhombic sulfur is so large, we intended to calculate the normal modes simply by constructing the imaginary box made by the infinite mass boundary. And the Raman experiment is done by using the more powerful Ar-Kr gas laser with lowering the temperature to ${\sim}10^{\circ}K$.