Abstract
Electrical conductivites of polycrystalline yttrium sesquioxides containing 1.6 and 3.2 mol % of holmium sesquioxdes have been measured from 650 to $1050^{\circ}C$ under oxygen partial pressures of $1{\times}10^{-5}$ to $2{\times}10^{-1}$ atm. Plots of log conductivity vs. 1/T at constant oxygen partial pressures are found to be linear away from the two inflection points. The low- and high-temperature dependences of conductivity show different defect structures of yttrium sesquioxide. The plots of log conductivity vs. log $PO_2$ are found to be linear at $PO_{2'}$s of $10^{-5}$ to $10^{-1} atm. The electrical conductivity dependences on $PO_2$ are found to be $1}5.3$ at $950-1050^{\circ}C$, $\frac{6}{1}$ at $800-950^{\circ}C$ and ($\frac{6.2}{1}$) - ($\frac{6.5}{1}$) at $650-800^{\circ}C$, respectively. The defect structures and conduction mechanisms have been suggested.