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A New Approach to the Maximum Dynamic Range
of the High Order Band-Pass and Band-Reject
Elliptic Filters
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ABSTRACT  High order filters are usually realized by cascading second order stages. In this paper, a simple me-
thod of pole-zero pairing in the high order band-pass and band-reject filter realization of the elliptic functions is propo -
sed for the enhancement of overall dynamic range. Furthermore, the optimum sequence of the various biquads of
high-pass notch, low-pass notch and symmetrical notch etc., is developed for the elliptic band-pass and band-reject

filters.

I. INTRODUCTION given low-pass function of order n must be de-

composed into a number of biquads (for n even)

In the cascade realization of the band-pass  or into a first order function in addition to bi-
and band-reject high order elliptic filters, the  quads (for n odd) {1].

By using frequency transformation, for

n even case, a number of biquads in the low-

pass elliptic function change into the high-pass
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case, respectively [2].

The main advantage of the cascading techni-
que is the relatively simple relation between
the poles and zeros of the transfer function
and the network elements. Thus, a relatively
uncomplicated adjustment of the filter para-
meters is possible which allows the network

elements to have under tolerances [12].

A. Band-Pass Type Elliptic Functions

As a consequence of the transformation
: , where w, is the center fre-
quency and B is the band w1dth we have the
pole-zero location as shown in Fig. la as illu-
strated for n=12 band-pass elliptic function.
The upper half from the horizontal line inter-
secting w=1.5 is similar to the pole-zero pat-
tern of the low-pass function; and the lower
half is similar to the pole-zero pattern of the
high-pass function [2].

Corresponding to each p; of a low-pass notch
function, there exists a pole p; of the identical
Q for a high-pass notch function.

The therefore,
be conducted as shown below

pole-zero pairing, should

_ (s ) (S—-ZF) for low-pass notch section
(S—Py) (S—PF, of Q (1a)
(S~ Z1) (S Z¥) for high-pass notch section

(S-- P{) (S~ P!) of identical Q (1b)
For optimal sequencing, i, should accompany
t; so that a pair of biquads; one of low-pass notch
and the other of high-pass notch, forms a sub-

section in the cascade [1], [2].

B. Band-Reject Type Elliptic Functions

Using the transformation S--

which is the inverse of the band-pass case, we
have the pole-zero pattern as shown in Fig. 1b.

By using the analogy, the technique which
results in the pairing and sequencing similar to
band-pass will be developed but the place of
low-pass notch function and high-pass notch
function is reversed [2].

The particular cascading sequence that results
in the transfer functions, from input to output,
having the flattest magnitude in band-pass and
the flattest at the bottom in the band-reject
will be developed for the elliptic filter realiza-
tion with reference to the Q of individual biquads.

Making use of the properties pertinent to
the elliptic function, a relatively simple method
of pole-zero pairing in the band-pass type and
the band-reject type will be developed to improve
the overall dynamic range of the realized filter

(51, [6].

II. HIGH ORDER BAND- PASS REALI-
ZATION

Let us take the case of n=6 for illustrative
purpose. The sixth order elliptic low-pass func-
tion may be written as a product of three biquads
of different Q’s.

It has been proved [2] that the maximum

dynamic range the sequence will be ordered as

follows where @, <Q.<Q:
T{S)=K t,(8) -1 (S) 15! (2)
Q, Ql Qs

The biquad t,(s) of the moderate Q, is followed
by t,(s)of low Q;and ¢ S)of high Q3. The biquad
t,(s) has the pole-zero pairing as shown in Fig.
2a.

In order to further enhance the dynamic
range we may distribute the gain K to individual
biquads as

T(S) =kt (S) ki 1, (S) ~kst3 (S)

Q. Q, Q, (3)

Applying the low-pass to band-pass transfor-
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mation we obtain the band-pass function of n=
12. #,(s)in (3) yields a biquad couple ti(s) and
t;(s). of an identical Q;. The component of the
biquad couple, viz., ti(s) is of the low-pass notch
9€LPN) type, and ¢;(s) is of the high-pass notch
(HPN) type, respectively, and together they
exhibit the band-pass characteristics.

Toe (S) =

Koty (S)t7(S) k11 (S)E/(S) -kyt5(8) 17(8)

[LPN[HPN][LPN[HPN][LPN]HPN] 4
Q: Q1 Qs

Each band-pass section is composed of LPN

first and HPN second because this will ensure that
strong out-of-band signals, especially high frequen-
cy ones, will be sufficiently attenuated before
reaching the second stage where they might
produce overloading or slew-rate limiting. Similar-
ly, it is usually recommended to place a band-
pass or high-pass notch section at the end of the
cascade [2], [4]. This will help to prevent inter-
nally generated low-frequency noise from ap-
pearing at the filter output. If the odd function
is given, there appears only one second-order band-
pass function< S,——lsa—;—' s )and it has the moderate
band-pass characteristics, therefore, second-order
band-pass function is placed at the last stage in
the sequence of the coupled biquads band-pass
elliptic function.

To obtain the optimum dynamic range in
the realization of the elliptic band-pass filter the
pole-zero pairing of the coupled biquads must be
done as shown in Fig. 2a and then cascading se-
quence, finally the optimum gain assignment
[8], [4] will be carried out. For general develop-
ment let us now write the function of even order
n as a proruct of g biquads

n

where the subscript is in the order of increasing
Q. The sequence of biquads for the optimum
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dynamic range in cascade realization has been
proved [2] to be

Case (a)
T(S) Kty ty *tn *ty bty =+ (6a)
A ‘01 i 1 4»2 i 2
for n=4k, k-1, 2, -
and
Case (b)
T(S) ~ Klwy ~ bz | by |, " lwz , * tne
T . 1 ' [ ‘4
for n 4k 2, k-1, 2, - (6)

When n = 10, for example, we write five biquads
in the order of pole Q% to find the cascading
sequence as indicated by encircled numbers.

T(S) ~Kt,(S)-1,(8) - 308) 1, (S)-1,(S)
a3 (e

cascading sequence

For n =12, we have

TS Kb (S 1, (8) - t508) -1, (S)1,(8) -1 (S)

¥ (3 o) 2 CYRNR(Y

When n is odd, the first order function ty =
S1a should be properly treated relative to other
biquads. For example, if we place t, in front in

the sequence as  1,-f,-t, -t, the minimum of
|1, | occurs at w = 0 while the minimum of the
product  lto-#,| does not occur at w =0 but
at w = 1. Thus it contradicts the optimum se-
quencing method proposed in [2]. On the other
hand, if we place to as a last entry to the se-
quence as t, - ¢, - t;+ to the procedure coincides
exactly as advanced in [2]. This leads to the
realization of the first order section as the last

stage of the cascade.

The normalized magnitude of the biquads in which
Qp, corresponding to midpoint Q exhibits the
highest flatness as shown Fig. 3.

For optimal sequencing in the band-pass realiza-
tion t; should accompany t;"so that a pair of bi-
quads; one of low-pass notch and the other of
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est flatness.

high-pass noth, forms a subsection in the cascade.
Considering the nature of LP to BP transfor-

mation, using the result of (6a) and (6b), we ob-
tain the optimum sequencing as

Top(S) =K 6]t ~tn It -t Y (70)
4 4 4 4

for case (a)

4 4

Tup (S) =K [tn 1) (Boes | “res |
4 4

.tﬁ+l ]

’
(tnee |
4 4

for case (b)

III. HIGH ORDER BAND REJECTREALI-
ZATION
As a consequence of the transformation S —
S"'igs%éig which is the inverse of the band-pass,
we have the pole-zero pattern as shown in Fig.
Ib. By using analogy, we can develop the techni-
que which results in the pairing and sequencing
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similar to band-pass realization but the place of
low-pass notch function and high-pass notch func-
tion is reversed.

TonlS) = Kt o tnd Ut ] (b, ol
for case (a) (8 al
TBR( K[lruz _+_] [t7/102 't;uZ \J
4 4
U%ﬂ” 'tﬂ‘._zﬂ ] (8h)

IV. ILLUSTRATIVE EXAMPLES

Example 1.

Find the elliptic band-pass function for the opti-
mum dynamic range realization under the speci-
pication; passband ripple K,=1dB, stopband at-

tenuation g =574p and stopband frequency

wg = 1.3 tutoff frequency w.-= 1,

bandwidth B=0.3.

From the standard table [3] we find n=6

low-pass elliptic function. For the optimum

dynamic range realization [2], we write
T(S)=Kt,(8) - t,(S) - 1;(S)
T(S)=K,t,(S) - Kit,{S) - Kst5(S)
where
(S)=- (S*+2.7698611)
& © (§?0.2909193 S +0.6785315)
K.—=0.1098799
Q,—2.8314733
. (S 1 1.7658735)
P TS 0.55141795 + 0. 1886488 )
K, =0.0106312
Q. —=0.7876733
S$24-17. 0590037)
t, (S) = ( )

(871 0.07816128 10.9964994)
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K3 = 1.1642064
Q; —12. 7716574

Ry the frequency transformation we obtain
n=12band-pass transfer function [8],[10],[11]

TwrlS) Kyt (S)(S) - K\, (S) i/ (S) -
Kt (S)15(8)
K 65 (S) - K7t7(S) - K{t{(S) -
KU (S) - Kiti(8) - KIt/(S)
Where
OS] (S*11.3008857)
A (ST H0.0629874S 1 1.7184224)
K, K,K/
28] e (8?43, 89137% -
B (S?10.0824723S | 2 .9460173)
Q; 20, 8118785 = Q7
C (
T £1.4499369 ) B
130117%5 2.0117435)
1 K! KI”
vy STisaolsley
v (S?10.1455614 S 2.5164742)
Q7 - 10. 8980921 =
vis) - (S*10.6216953)
e (8% 10.0163357 S+ 1.1659816 )
K, KK/
+ C
BIS) 8.1430569)
x 2214499 131327720 )
Q; 77. 8180702 = Q7
Magnitude characteristics of the elliptic

band-pass function is shown in Fig.4(a).

Example 2

Using the method analogous to the band-
pass case to find the optimum sequence for the
band-reject function, we obtain the band.-re-
ject transfer function of n=12 [7],[8],[9].
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(S) - K7 (S) ¢ (S) -

(8*+2.8896022)

T(S) = Kﬂ:(s)t; 1 (S)_
Kot2(S) 4 (S) ‘ (S74-0.9438618 S+ 41026964
=K;t7(S) - K78 (S) - K{t7(8) - b (S) = (S8*+1.7519715)
KUt (S) - Kitl(S) - K14, (S) : (57405176320 S+ 1.2339451)
where K.=Ki K §
Q! —2.1459830 — Q!
H1S) -—; (S7+2.7480273) s (5+2.4390635)
(§7+0. 1281351 5-+3.3430624) : (S7+0.0228358 S 1 3.1363850)
2
AT — il [ ls) - (8'+2.0755920)
(57+0.9438618 S+1.5143306 ) ) (8+0.0163821 S+ 1.6141195)
K.=K; K{
Qi — 14. 2693480 = Q7 K,=K;K{
Qi ~77.5529734 = Q7
As=0 0018 As=0 00138
078 114120 187 198 265
Mag [H(j,,) )
i WVW
4 N=12
0.89 N
A, 25748
1.20)lwo=1 5 l\1.86
O LI 1 L
' @i=12 wy, =175
Freq. [ w]}
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Magnitude characteristics
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Magnitude characteristics of the elliptic band-
reject function is shown in Fig.4(b),

V. CONCLUSION

A simple method of pole-zero pairing in the
band-pass and band-reject case has been proposed
for the cascade realization of elliptic functions
which lead to the maximum dynamic range.

It is shown that the sequencing techniques
can be developed with reference to the pole
Q’s in the P-P and B-R elliptic functions.

Two examples are provided to illustrate pro-
posed methods. The first example in case of band-
pass realization is the case in which the pole-
zero pairing, biquad sequencing, and the gain
distribution are ail employed to optimize one of
the most relevant performance measures. Viz.,
the dynamic range.

The second example in case of band-reject
realization is conducted to enhance the dynamic
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range as much as possible.

The proposed high order band-pass and band-
reject elliptic filter realization may be used not
only for RC-active filters, but also for switched
capacitor filters.
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