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ABSTRACT

In this paper, Bayesian analysis of the general linear econometric model is carried
out by using a multinormal prior for the vector of unknown regression coefficients
and a half-normal prior for the standard deviation of the disturbances.

1. Introduction

Consider the general linear econometric model (GLEM) specified by
y=XB+u 1.1
where y'=(y1,¥2 ...,¥») is a point in R" and represents observations on an endogenous
variable, X=[X;;], i=1,2,...n, j=1,2,...,p, is an #Xp matrix of observations on p
.exogenous variables, @’:(ﬁl, Bz, ---B3) 1s a p-dimensional vector of unknown parameters
and u'= (Uy, Uz, rey Un) is an #-dimensional vector of unobservable disturbances or errors.
1t is assumed that Rank(X)=p, and that elements of X are nonstochastic and independent
of #, whose elements are iid normal (0, ¢°). In this paper, a Bayesian estimator of § is
obtained when the prior pdf of the unknown parameter @, given ¢, is multinormal, and

for the prior density of ¢, we take a half-normal density g(¢) with a parameter “a” as

given below:

g(0)=(%>1/2%€'7% (0<g <0 5 a>0) 1.2)

In obtaining the Bayes estimator, it is assumed that the loss function is squared error.
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2. Bayes Estimator

In what follows, the prior pdf of 8, given o, is taken to be a multinormal density

g(@[()')oc ;p eXD[—“‘Zl;“r], (2- 1)

where

V=(-5)"A(B-p). (2.2)
Here @ is mean vector of the multinormal prior in (2.1), and A represents the prior
covariance matrix of @ It is assumed that § and A are known on the basis of prior
knowledge. The prior g(s) is given in (1.2), and the parameter “a” in (1.2) is also
assumed known on the basis of prior knowledge. The joint prior pdf on the parameter

space of (B,0) is given by

|4 02]

1
g(B,0)oc—5 exp[— 55T T B 2.3

To compute the Bayesian posterior, we need the likelihood function. Under the assumptions.

stated earlier, the kernel of the likelihood function turns out to be

4 ocj,l,,—exp[— 22/2 ] 2.9
where

W=[(8—5)" X' X(8— )+ (n—p)S?], (2.5)

(n—p)S*=(y—XH)" (y—XP), (2.6)
and B=(X"X)"' X"y @.7

is the OLS estimator of 8. The transition to Bayesian posterior g* (8,0) is made in the

usual manner to obtain

VW) o ] (2.8)

208 T 247

To obtain the marginal posterior density of 8, (2.8) has to be integrated over (<o <oc.

8% (B, a)ec Gnlﬂ, exp{—

This integral is evaluated in terms of the modified Bessel function of the third kind
K. (2) (Cf. Erdélyi, 1953, p.5, formula (13)) by using its integral representation (Erdélyi,
Op. Cit., p.82, formula (23)) given by

- ENL
50v—p—le‘2 G 5 K. (u2) (2.9)
where Re(2)>0, and Re(u?2)>>0. Using this result, the Bayesian posterior density of 8

is obtained (see Appendix A.1 for derivation) from (2.8) as



Bayesian Anslysis of GLEM with Half-Normal Prior 97

Kas (Y TE)
*(8) oo : T 2.10
g Qoo (2.10)

which is defined for B;,&=(—c0, ), j=1,2,...,p. We now use (2.2) and (2.5) along with
a lemma of Box and Tiao (1973, p.418, lemma 1) to obtain

V4 W=by+ (f—d)" (A+ X' X) (8—a) 2.11)
where

d=(A+X'X) (AF+X'XB), 2.12)
and

b= (—f) AA+X'X) X' X(B—h)+(3—Xp' (y—XP). (2.13)

Hence, from (2.10) and (2.11), we have

Koo <1/-al—2~[bo+ (G- A+ X'X) (f—d)])
g5(B)oc : ntpi (2.14)
- [oot (B—d) (A+X'X) (B—d) 1™ ¢

which is defined for 5,=(—co, ), j=1,2,...,p. It is known that under the assumption
of squared error loss function, the Bayes estimator of @ is simply the posterior expectation
of @ calculated from g*(@) in (2.14). This evaluation is carried out with the help of a
result of Bhattacharya and Saxena (1985) and the details are given in Appendix A, 2.
The final result is

E()=d=(A+X'X)"(AB+X'y) 2.15)
for the Bayes estimator of @ It may be pointed out that this estimator (2.15) is mathe-
matically somewhat more general than the Hoerl and Kennard's (1970) ridge estimator

Be= (X' X+RDT X'y (£>0) (2.16)
proposed for situations wherein the matrix X’X is ill-conditioned (cf. Riley 1955, Lawless
1976). However, it should be understood clearly that the resemblance between the Bayes
estimator (2.15) and the ridge estimator (2.16) is merely mathematical and the philosophies
involved in the two approaches are radically different. While Bayesian inference is relevant
for a single observed sample only, the sample space is deemed very important in classical

inference.

Appendix A.1

The Bayesian posterior density of 8 is given by
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g ®={ g(g 0)ds

oo 71137 2
m500‘<"+P)exp[— (Vi 1) d Jda

20 T 24°
o (ndkptl) I/'+ W
ocjoy z exp[_ ( 57 ) Zvaz Jdv (A.1.1)

This integral is evaluated by writing v:ﬁ;‘)_—l, z:—ﬁlz—, and p2=a*(V+W) in (2.9}

of the paper, so that we obtain

T i o = U (LA

a 2 [V+ I/Ifj —z; T at
VW
Kli”;L(l/ a2 )
cc : nEp—1 (A.1.2)
V4 e

as desired.
Appendix A.2

The posterior expzctation of @ can be computed from the Bayesian posterior density
g* (@) in (A.1.2) by using the results of Bhattacharya and Saxena (1985). The details.
are too long to be presented here in full, but we shall sketch the main derivation.
Bhattacharya and Saxena (op. cit.) define a multivariate modified Bessel distribution with

parameters (v, , A, 2, b) by the joint density function of (X, Xz, ..., X,) as

f(x") =C- I‘D(g[fjgﬁ?] ) (A.2.1)
where
LA VR o p e pirz (v-%)
C=—i () Ehaery (8.2.2)

and x'=(x, 12, ..., ¥,) ER?, a’=(ay, az, -..a;) =R*, b and 2 are real positive scalars, and
A is a symmetric square matrix of order p such that
Q=(E—a) A(x—a) (A.2.3)
is a positive definite quadratic form over the field of real numbers. Then, they obtain
EX—a)={"{(—a) fx)dy
oy, BT
RE [b+27 A,yy’z

(A.2.4)
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Since A is symmetric positive definite, there exists a real nonsingular matrix B of order

p such that A=B’B. Clearly |A|=|B]|% We then apply the transformation 2'=yB’, so
that y’Ay=y'B’By=2'2. The Jacobian of this transformation is

J= 0(21y 22y ooes 25) =|B|=]A|V:

(P10 Y2r weer Is) (A.2.5)

?
Since y; is linear in z;, that is y;=>_ /:z;, equation (A.2.4) yields
i=1

c s, BORIIZ])
EX,—a) =z {0 {30 b T dz’=0  (A.2.6)

i=1

so that E(X;)=a;, for j=1,2,...,p, that is, we have

EX)=a (A.2.7)

We apply this result to the posterior density in (2.14) of the paper to obtain
E@=d=(A+XX) " (AF+ X' Xp)
=(A+X'X) ' (AB+Xy),
proving the result in (2.15) of the paper.
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