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On the Bivariate Dichotomous Choice Model
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ABSTRACT

Data set generated by the bivariate dichotomous choice made by individuals often
occurs in practice. This paper presents general model of how such data set is generated
as well as methods of estimation. The M.L.E. is examined and found to be comput-
ationally burdensome. A simpler estimator, the bivariate dichotomous two-stage estimator,
is suggested as an alternative. The two-stage estimator is found to be as efficient as
the M.L.E.

1. Introduction

Lee (1970) and Duncan (1982), among others, formulated mixed, continuous/discrete
dependent variable models with normal distribution. But they considered the case when
the dependent variable is limited by binary or polytomous choice. Amemiya (1974) and
Morimune (1979) propased estimation methods for the bivariate discrete dependent variable
model considered by Ashford and Sowden (1970).

In this paper we try to bridge the gap existing between the two models. We develop
a method of estimating parameters of a mixed, continuous/discrete dependent variable
model when the dependent variable is limited by the bivariate dichotomous choice made
by individuals. The following model shows the reason for the appreciation. In Section 4
we give an example of the model.

V=81 X+e. iff I5=1
Y= Xu+e, iff Ifh=1
Yau=05Xse+es iff Ih=

(1.1
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Y4t:,61X4t+€4t iff ]1‘121

t=1,2, =+eee- , T,
where
e if a’Ui=<e. and 'V,<ey
IW:[O 0.W.
]t:{l if a’U> e, and &' Vi<ey
0 ow.
.1 if a?Ui<ei. and 'Vi>en
1“:[0 0.W.

[]_ if a/Ut> ¢;, and b V:> €
0

0. wW.

@’U; and &'V, are individual bivariate dichotomous choice functions, e.. and e:;, are random
threshold levels of the choice, Xi: ’s (i=1,2,3,4) are vectors of exogeneous explanatory
variables with or without overlapping elements, 5%, 5%, 8%, 5%, a and & are unknown
parameters, and e'= (€, €y, €3, €41, s, €w) iS @ 61 uncbservable correlated N(0, 3)
random vectors, where

0% 012 013 14 C1a 017

0% O3 024 O2a Oz

0% Oy Oy O

= 5 ) (1.2)
symm. T4 O4a Ogp |
1 p
1 2

We desire a consistent and asymptotically normal estimate of (1.1). Nelson and Hahn
(1972) pointed out that ordinary least squares produce inconsistent estimates of regression
parameters if the dependent variables (Y.'s) are censored or truncated. We refer to this

inconsistency as the selectivity bias.

2. Maximum Likelihood Estimation Method

Let e'= (e, €u, €3, €u, €, €s) have multinormal distribution given in (1.2), and
2

Yils=(Yulls, Yaulll, Yaullt, Yillb) :t=1,2, -, T} be a random sample of
size 7. Then the likelihood function for the model (1.1) is given by
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It

T rpo (o
LZ{LB‘L,V' c,mf(yu"ﬁ'lXu, Cta, etb)detadetb] °°

It

) [:S:VtSi;U'g(YZ‘_ﬁIZX% €iay €:n) detadet] N 2.1
|

It
ot

) [Sil:‘gj’u,h(y3‘_‘ﬁgX3" €:a, e!b)detadetb

) [Si;v‘gi:“l(y‘“_‘sl‘X‘“’ €1a, e”’)detadetb:r:l

where f(-), g(+), 2(-) and /(+) are joint densities of random variables (e, e, es),
(€51, €tay €w), (€3¢, €, €w) and (e, €1, €u), respectively.

The maximum likelihood estimates of likelihood function (2.1) are obtained by maxim-
izing (2.1) with respect to all parameters. But this procedure may be cumbersome in
practice, because the likelihood function involves intractable double integrals of trivariate

normal densities.
3. Bivariate Dichotomous Two-stage Estimation Method

A class of computationally simple estimators, called two-step or two-stage estimators
gained popularity in recent years, particularly in the mixed continuous/discrete dependent
variable case. The class of estimators alluded to is the class of M-estimators which
satisfly Huber’s condition (1981), and hence the two-stage estimators are consistent and
asymptotically normal estimators. This assertion has been justified by the following
theorem.

Theorem 1. (Duncan, 1982) Let 6, be a root of S¢i(Z; 6)/N=0 satisfying the
conditions of Huber’'s Theorems 2.4 and 3.1 (Huber, 1981, p.131~133), and let ﬁ(ﬁ) be
a root of 3 ¢, (Z:;6, 8)/N=0 also satisfying the conditions of Huber's Theorems 2. 4 and
3.1 for every 6. If ¢,(Z:;0, ﬁ) is boundedly differentiable in #, the two-stage estimator
(8, B(6))) satisfies the same conditions and hence is a consistent and asymptotically

normal estimator.
3.1. Correct model eliminating selectivity bias

Lemma. (Anderson, 1958) For X : px1, let X~N (6,Y), and X be partitioned as X’
=(Y’, Z’). Then the conditional distribution of Y given (Z=2) is also normal with

mean vector a linear function of z, and covariance matrix independent of z; that is, the
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conditional distribution of Y, given that (Z=2) is
(Y] Z=2)~N@r+ LS5 (2—02), Tu—TuIi Su)
where 0'= (6", 0z'), :[Zu lej] 2 gxg X X7
1Xp 1Xq 1X7 S Yol X gxw and p=g+7.
Definition 1. A random variable X; and X, are said to have a truncated standard bivariate
normal distribution, if the joint probability density function g(x;, %) is given by
g (%), %)= (27 V1—p?) texp{— (x,2~2px:2,+ %27 [2(1—p")} / F(A, B, p),
where A and B are the truncation points, for X, and X,, respectively and
F(A, B, p) is the normalizing constant.
Theorem 2. In the standardized form, the first moments about the origin of the X, are
Fi(A, B, p) EXi=—¢(A)O(I*) — p$ (B) D (u*)
Fy(A, B, p) EXi=¢(A)P(I*) —pg(B) {1 -0 (")}
Fy(A, B, p) EX;=—¢(A) {1-0 (")} +pd (B (1*)
Fi(A, B, p) EX,=¢(A) 1—-0 (")} +pp(B) {1-P(u*)},
where
I*=(B—pA)/ V1—p% w*=(A—pB)/V1—p?
Fi(4,B,p)=PX, <4, %,<B)=|" " fl, x)dxdx,

F.(A,B,))=P(X>4, X,<B)=("{" r(x, x)dxdx,
similarly, Fy(A, B, p)=P(X,<A4, X;>B), Fi(A,B,p)=P(X>A, X;>B), f(x, x)
is a p.d.f. of bivariate standard normal distribution, and ¢ and @ are p.d.f. and c.d.f. of
standard normal distribution, respectively. We can easily calculate £X, by using symmetry
of bivariate normal distribution. Proof of Theorem 2 is done by strightforward intergration
and is therefore omitted.
We may reparameterize the model (1.1) by using Lemma and Theorem 2 such
that the reparameterized model is
Yi=8X—01.0@U)O*) /| Fi(a’U,, O'Vy; p)
—ong O VYOWU®) /Fy (@ U, V'V p) -+ for I5i=1
Yo=8Xoi— 0200’ U) 1—0U¥)} [ Fo (@’ U, O'Ve5 p)
Fouwdp(B' VYO W*Y/Fola’Us, O'Ves p) 472 for I5=1 (3.1)
Yiu=8yXae+03.0(@ U)OU*Y/ Fs(a’Usy, &'V, p)
—oup (B’ V) 1—0W*)} /Fs(@’ U, b'Vi; p)+yse for 15=1
YVie=8/Xi+01.0(@U) {1-0(*)} /F(a’Us, Ve p)
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+oup (B VY {1—0 ")}/ Fol@’ U, O Vi;p) +2u for It=1
where Epi]=0, i=1,2,3,4,t=1,2,, T, w*=(a'U~b'Vi-p)/ V1=p%
and [*= (&' Vi—a'Uip)/ v1—p%

3.2. First stage of the estimation(Estimation of @, b, p or ¢)

The probability model dealt with in this section is the modified model from bivariate
dichotomous case of normal models proposed by Ashford and Sowden (1970) and Morimune
(1979). Using the same symbols as the model (1.1), the modified model is as follows:

Pu=F@U, bV, ¢W),
P.@)=P,({)+P()=0(a'Uy,
P. (=P () +Pu(t) =0’ V),
le' Wil £1,

(3.2)

where @ is the distribution function of a standard normal variable, and F' is the cumu-
lative distribution function of the bivariate standard normal variable with correlation
coefficient ¢’ W.. If the chi-square test, proposed by Amemiya (1974), accepts the null
hypothesis that p is constant over {, we may replace ¢’W: by constant p as in Ashford-
Sowden model.

Theorem 3. Modified Full Information Minimum Chi-square (FIMC) Probit estimators 2,

b and ¢ are obtained by

~

4

? T - *\ -1 T A
f:(b):(;élx,*'lext) TXF LT, 3.3)

Theorem 4. Asymptotic distribution of 7 is as follows.
T ~ -
ZT G-} 2 N0, [zxxEx2/T] 7).

Proofs. The proof of Theorem 4 is essentially the same as that of Amemiya (1974)
and is omitted. To prove Theorem 3 we modify the derivation of FIMC (Full Information

Minimum Chi-square) probit estimator proposed by Amemiya (1974).
Define 7.0() = £18% 7o) =E18h ru®) =31,
t= t=1 t=1

D@ =71,@) /1y oy ) =70 &) /1y, D1y (8) =74, () /e,
D) =pw@® +5hu &) and p. () =po; () + 1y ().
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By a Taylor expansion of & {p,. ()} around p,.(f) we have approximately

O Hp. O} =a' Ut [p1. () —p1. D] /¢ @’ U, S. 4
where ¢ is the density function of a standard normal variable. Similarly, we have
O D OY=b'Vit-[h (1) —p D]/ S B Vo). (3.5)

Next, we solve the model (3.2) for ¢’ W, as a function of py; (£), pi. () and p., (), and
call that function G. Thus we have
CWe=Gpu®), p. ), pah}.
By a Taylor expansion of G{p,,(¢), pi. (), p..(O)} around G{p (&), p.. (), p.. (O} we
have
Glpu®), b &), paOY =Wt Gielbu () —pu (D))
+Goe{br &) ~pr. O} +Goe{Br () —p (D}, (3.6)

where Gu=1/fi, Gu=—0{W' Vi—c'Wea'U)/ V1= W)} /fsy Gu=—0{(@U=b'Vi-c’
W/ V1= (W3 /f,, and fi=f(a’U, &V, ¢ W) isthe standard bivariate normal
density function with correlation coefficient ¢’ W..
We rewrite equations (3.4), (3.5) and (3.6) as

Q:=a'U:+e:!

Sie=b"Vi+e? 3.7

P.=c' W,+ed t=1,2, =, T,
where the definitions of the new symbols are obvious.

The weighted least squares method for multivariate regression (3.7) leads to

A

a
<B>:<é1Xt*, it—IXt*>—1tZ:1)(t*/it—1Yt*,

4
U 0
\Vhere )(t*:]' I/g }Yz*: (Qt, S:, Pz) ,, Z::MDMI,
0o W
1/ Uy 0 0 by by by
M: O l/(b, I/t) 0 i|, Dzl/T sz b23}7
Gy Gy Gy symm. by,

bi={pu ) +Pu®} {pa() +ho(D)},

bio=p1 () —{pu ) +L10®O} {Pult) +L0u (D)},

boo= (P () + D01 (O} {(D10 () +Doo (D)},

bis=p11 (&) {Do1 (1) +Doo (D)}, baa=Pp11 () {10 +L0o (D},
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bys=pu () {1—pu (D},
and 2,‘1 is obtained by replacing the population parameters in X.™* with their sample

estimates.
3.3. Second-stage of the estimation method (Estimation of §i's, i=1,2,3,4)

Construct the equations by substituting the modified FIMC probit estimators @&, b and
¢é for g,b and ¢ in equations (3.1), such that
Yi=B/ Xu—01.$@UDOU*/FL @ U,y bV, W)
—oud & Voo @*) [ @ U, b Vi, & W) 470
Y=y Xor—00ud @ U (1—0 UM} /R @ U, b Vi, & W)
+03up (B VOO W) [ Fo@ Uy b Vi, & W)+ (3.8)
Y=y Xu—01a @ UDOU®) [Fe@ U, bV, &W))
o Vo 1—0@"))} [ Fo@ U,y bV, &W) +7ae
Y= Xutowd@U) (1—0UN Y}/ Fu@ U, bV, &W
toup &' Vo 1—0 @}/ Fa@ Uy bV &W) + 10,
where E[n:]=0, i=1,2,3,4, t=1,2, == T,
a*= @ U,=b Vet Wo | V1= E W7,
=G Vima' U’ W [ VI= @ WD,
Var () =Elei|en<d’ U, eas<b Vi]—{Elev]en<t’ U, esn<b Vi}?
Var () = (E(e4 | 6=’ U, ew>b Vil— {Elex] €<t Us, ex>b' VY2, (3.9)
Var (gs) =ECed|e> 8 U, ewsb Vi —(Elexe>a'Us, easb V1YY
and  Var ) =Elei|ew>a Ui, ew>b' Vi~ {Elex]e>a'Us, ea>b' V)2
Finally, we get consistent estimates Bi, Gis, 6% and 6 (i=1,2,3,4) by applying 0O.L.S
method for each equations (3.8). Here, we take M.S.E. of each equations as ai.

To get more efficient estimators, we may proceed a numerical iterative maximum
likelihood procedure to the likelihood function (2. 1), taking these consistent estimates as
a set of initial points. But computationally simpler Aitken estimators (Generalized Least
Squares) are readily obtained using estimates of Var (y.)’s. We may obtain consistent
estimates of Var (3:)’s by replacing consistent estimates &6, 0w and &% into the equ-
ations (3.9) such that

Var (g = Var @) | Gia, Gy 65, 1=1,2,3,4.

See Kim (1984) for explicit parameteric form of the equations (3.9).
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Theorem 5. The bivariate dichotomous two-stage estimator (7, Bi(?)) is a consistent
and asymptotically normal estimator.

Proof For this proof let 3¢ (ft, Xi:#)/T=0 be the normal equation of (3.3), and let
S (Ye, Xi: B:(7))/T be one of the normal equation of the equations (3. 8).

Theorem 4 says 7 is a consistent and asymptotically normal, and B,- (7) is the Aitken's
estimator which is also consistent and asymptotically normal for every y. Hence,  and
B () satisfy the conditions of Huber’s Theorem 2.4 and 3.1. Consequently, the result

of Theorem 1 immediately completes the proof of the Theorem 5. See Duncan (1982) for

the detailed proof.
4. A Data Application

In this section we apply an economic data set to the model (1.1). We take the data
from “Panel Study of Income Dynamics” (Survey Research Center, University of Michig-
an). For the adoption of the model, we define, the bivariate dichotomous discrete vari-
able, Ii=1 if the i-th family in the #-th income group owns a house with more than
five rooms and 0 if not; /5=1 if the same family owns a house with less than five
rooms, and so on. We use a constant term and a weighted mean of income in each
group for the elements of U, and V., a weighted mean of housing expense in each group
for the dependent variable (Y.), and the constant term and the weighted mean of
income in each group for the elements of X,. Our purpose of data analysis is to get an
efficient estimate of the marginal propensity of housing expense (8. for each group, /=
1,2,3,4.

Table 1 includes estimated values by the bivariate dichotomous probit model (3.2).
Table 2 tabulates all the estimated coefficients, standard errors, and ¢ values for the
probit model. In Table 3, the estimated values of parameters of the model (1.1) are
tabulated and compared to the estimated values of parameters under the model without
consideration of selectivity bias. To show that selectivity biases against 8 ’s are an
appreciable disadvantage of the usual least square method under the linear model with
no consideration of selectivity bias, we apply the working rule discussed in Cochran (19
77). The working rule says that the effect of bias on the accuracy of an estimate is

negligible if the bias less than one tenth of the standard deviation of the estimate.
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Table 1 Numbers of Households Responding for Economic Attributes in Terms of Annual

Income
@seowmr Yes No
Number Total
of rooms| Yes (>5) No (<5) Yes (>5) No (<5)
Income
41 58 36 123
0—5000
(3500) (48) ) (72) (35) (103) 258
[4203 (4011 1527] [463]
63 69 29 75
5000—6500
s (60) (68) G 236
[675] [702] (8761 . [877]
) 85 ' 93 29 70
R (86) (80) (35) @) 277
8121 | [799] rio21] [1023]
87 [ 64 24 l 45
8000—9500
18950) (79) i (62) (@) (52) 220
[923] ‘ [987] [1336] [1136]
101 i 64 29 \ 41
9500—11500 |
110600) (98) i (64) (25) (47) 235
[1218] ‘ [1236] [6180] [1328]
99 ‘ 57 24 \ 43
11500—13500 3
12750) (105) 69 e (38) 236
r15961 r1527] £2036] [1720]
151 61 25 l 29
13500—16000
0 S (143) ) @ (36) 266
[1840] | [1763] r2326] [1936]
161 55 15 19
16000—20000
\17520) (157) 63 (16) (24) 250
[2036] 71983] [2663] [2168]
185 38 9 20
20000—30000
(23000) (196) (36) [€))] (12) 252
[2789] [2513) [3268] [2880]
Total 973 559 220 465 2217
X(zz:):26. 9 [)—Valuei. 15

Note: Numbers in parentheses are estimated cell frequencies by the Bivariate Dichotomous Probit

model.

Numbers in brackets are housing expenditures.
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Table 2 Estimated Coefficients

‘ Coeff, ‘ S.D ' t-value
a, (income) | 0.7681 | 0. 0535 | 14.4
a, (constant) | —0.3564 | 0. 0651 | 5.5
b, (income) | 0. 0684 ] 0. 0274 | 25
b, (constant) | —0.7005 | 0. 0630 | 11
¢: (income) | 0. 1651 } 0.015 | 11
¢, (constant) | 0.1923 | 0.073 | 2.7

Note: Coefficients and standard errors of income variables, a;, b; and ¢, are multiplied by 104
This table is an excerpt from Table V of Morimune (1979).

Tabble 3 Estimated Coefficients and Their f-value

Estimated values of:

Pa B | Be B | e B | B B

With consideration 94  0.12114]294.1 0.08203
of self-selectivity (. 0247* [. 018967*
(0.13) (5.05) [(0.70)  (4.33)

—  0.12368 [234.6  0.14618
[. 01882]* [. 020747*
(= (6.57) {(1.82)  (7.05)

Without consideration of | —64.6 0.1238935.18  0.111004 —  0.14981 | 93.96 0. 121439
self-selectivity ‘

(L.S. estimates) (—1.9) (29.5) [(0.78) (31.99) | (=) (59.19) [(2.14) (35.83)

Note: Numbers in the parentheses are f-values. Numbers in the brackets are standard deviations.
* denotes significance of selectivity bias (R>. 1.

5. Concluding Remarks

We considered a data set generated by the bivariate dichotomous choice by individuals.
This paper develops a model of how such data are generated, and derives a simple
estimation procedure. Suggested model unifies censored regression models and discrete
choice models. We have shown that the bivariate dichotomous two-stage estimators can
be obtained even in the cases where the corresponding maximum likelihood estimators
are computationally burdensome. Asymptotic properties of the two-stage estimators are

proved to be consistent and asymototically normal.
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