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Abstract

Systems reliability can be improved by using redundancy and/or developing more reliable
components. This paper considers a joint optimization of both alternatives for a series system.
It is shown that the n-stage, optimization problem can be decomposed into # single stage sub-
problems. Each subproblem is further transformed into a univariate optimization problem for
which a simple and efficient solution method 1s developed.

1. Introduction

Basically, there are two ways of achieving high system reliability. One 1s to use redundancy
and the other is to use more reliable components. Many authors ([2], [3], [5]), —[7], [9]) pro
posed various models and solution methods for a joint optimization of redundancy and com-
ponent-reliabilities. This paper considers the similar problem for a series system with # inde-
pendent stages (or subsystems). It is shown that the #-stage reliability and redundancy optimiza-
tion problem can be decomposed into » single stage subproblems. for which solutions can be
derived more simply and efﬁcientiy. The overall optimization can be accomplished by dynamic
programming or other search techniques.

In passing, it is worth noting that Tillman ef @/ [10] thoroughly reviewed optimization tech-
niques for systems reliability when redundancy is of primary concern.

2. Notation

n Number of stages in series.

7i Reliability of each component in stage ¢, 0 < »: << 1.
Xi Total number of redundant components in stage i
Ci(ri) Cost of each éomponent with reliability #»:; in stage <
R Lower bound of system reliability.

R Reliability of stage

Qi 1—R:.

R (R1, Rz, ..., Ra).

2, I Sum or Product over the domain of index.
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3. The Model and Decomposition

A reliabilty and redundancy optimization problem for a #n-stage series system is given by
Problem I
Minimize 2 xi Ci(#i) (1)
subject to Hif1-Q—r)% | = R, (2)
xi = 1, integers for all ¢

where the component reliability »: satisfies 0 < 7: < 1, x: is the number of independent, identi-
cal components at stage 4, and Rs (0< Rs<1) is given. It is assumed that each cost function
C(#) is strictly increasing with repsect to » and is continuously differentiable. Table 1 shows
some cost functions which appear in the literature. The reason why 7 =0 or 1 is not consider-
ed is as follows. If »i =0, then the system reliability becomes 0, and therefore, Problem 1 be-
comes infeasible under the assumption that R, >0. Further, stage 7 with »=1 can be eliminated
without loss of generality since optimal value of x: equals 1 and the stage reliability becomes 1.

Note that Problem 1 is equivalent to

Problem I-A:

Minimize Zi Xi Ci(?’i)
subject to 1—(1—#)% =R for all ¢ (3)
II iRi = R, (4)

xi 2 1, integers for all ;.
The equality in Eq. (3) or (4) is justified since the objective function is assumed to be strictly
increasing with respect to #:'s.

Table 1. Examples of Cost Functions.

Author C(» Cn)/C(»
Aggarwal, k{tan(z»/2)]° sin( 7y)/ ma
Gupta[1l] k>0, 15a=2
Tillman, et al. [9] E(—In r)e (riln r)/a
k>0 a>1
Misra, kexpla/(1—7)] (1—7)%/a
Ljubojevic [5] £>0 a>0
Tillman, et al. [8] kre v/a
k>0
Suppose R=(R1, Rz, ..., Rx) which satisfies Eq. (4) is given. Then, Problem I-A can be

decomposed into # single-stage subproblems in each of which optimal x: and » must be deter-
mined. Many techniques are conceivable to optimally determine R. In this paper the dynamic
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programming approach is presented due to its simplicity. Other search techniques may be also
employed.
In Figure 1, subsystem i corresponds to stage i where
decision variable = Ri, R: <R:i< 1,
input state variable = S; = \ 1"1+1 Rk,

state transition: Si-1 = SiR:, and
return function = x; Ci(#:).

Then, a backward recursion procedure may be described as follows.
At stage 1,

f1(51)=ng§1 {x1C1(n1): 1—(1—»)*1 = Ry,

S1R1 =SS0 =R }. (5)
Since S1Ri = R, there is no optimization at stage 1 and RI = R,/S1.
Then, for given S1, the optimal values of x1 and »I can be determined based on the pro-
cedures which will be discussed in the following section. In general at stage ¢, =2, 3, ..., n,
fi(Si) = mlgl {xi Ci(7i) + fi-1(Si—1): 1 =1 —#r)* =R,

Si-1 = SiRi} (6)
where S»=1. As in stage 1, R}, xi, and 7 are determined for given Si Then, the overall the optim-
al solution is found by tracking the optimal path form stage # to 1. In implementing the above
procedure one needs to consider a set of grid points for the state and decision variables, together
with some interpolation.

Note that for a selected R: at stage 7, the following optimization problem needs to be solved
(subscript 7 is dropped for simlicity).

Problem II :

Minimize Wix, r)=xC(r) (7)
subject to 1-1—-»n*¥=~R (8)
x = 1, integers (9)

In the following section a soultion method for problem II will be discusssed.
4. Single-Stage Optimization

If we relax the integer restriction on x, then from Egs. (8) and (9),
2=(n Q/In(1—7) (10

where 0 <7 = 1— @, and @ =1—R. Therefore, without integer restfiction, Problem II is eq-
uivalent to

Problem II-A:
S _ C(r)
M:nimize Z(r)=1In Q =7 1)
subject to 0< r=1—-¢@



Assume that Z(») has a finite number of local minima. Although it is not difficult to find a

function which violates this restriction, for most practical problems this presents no difficulty.

Then,
1.
2.
3.

5.

Problem II can be solved according to the following steps.

Solve problem II-A obtaining all the local minima i, j=1, 2, ..., m

For each #/, calculate x’ from Eq. (10).

Find x/! =[x/] and x/2 = x/! + 1 where [x] is the largest integer less than or equal
to x. If 2/ is an integer, x/! = x/%2 =yx/.

. Recalculate » as

ph=1-Qu¥t =12 . mk=12 12
Choose x/* and #/* for which Win Eq. (7) is the minimum.

Essential to the success of the above procedure is the capability of identifying all the local
minima of Z(r). It is the author’s experience that in many cases Z(#) has only a few or less
local minima so that graphical analyses may be used. In fact, for the cost functions in Table 1

the number of local minima 1s at most one. For a more systematic ways of implementing step
(1), refer to [4] and the references cited therein. In the following, the above procedures are
described in detail with an example.

The objective function Z(») does not necessarily possess such nice property as convexity or
concavity. However, Z(r) can be characterized based on the property of Z'(#). That is,

C(»/C(»=100—1°?
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Fig. 2:C(#)/ C(r) and — (1 —#»)n(1 —7) for the Example.



Z(ry= hirg(r) (13
where

)= (ImQ)C(n/{(1—7r) lin(1—-7)]%, and 19

&)= (1 =nin(1—r)+ C(r)/ C(7). (15
Note that 4(») <0 for 0< » <1—@Q. Therefore, the sign and zeroes of Z'(») are determined by
those of g(r). The function (I — #)in(1 —#) is convex and has a unique minimum at 7= 1-—¢!.
In many cases C(»)/ C'(7) has a rather simple functional form, sometimes even simpler than
((r) itseif (e.g., see Table 1). The behavior of g(r)is then easily identified by comparing (1—7)-
In(1—# and C(»)/ C(#). For instance, Figure 2 shows the graphs for —(1—#) (1 —7») and
C(»)/ C'(») when C(») is from [5] with @¢= 0.1 (see Table 1), and 1 — @ =0.98. The two graphs
meet at »= (0.8255.
From Figure 2 and Egs. (13) —(15), the sign of Z'(#) is negative for 0 < »< 0.8255 and posi-
tive for 0.8255 = » < 0.98. In other words, Z(7) is strictly decreasing up to #= 0.8255 and strict-
ly increasing thereafter. We therefore conclude that »=0.8255 is the global optimal solution to
Problem II-A. The corresponding x is 2.24 from Eq. (10). Since this is not an integer, we com-
pare the two cases, x =2 and 3. When x= 2, the optimal value of » is 0.8568 from Eq. (12)
and the total cost is 4.0567k. Similarly, when x=3, »=0.7286 and the total cost-is 4.3365k.
Therefore, the optimal solution to Problem II is x* = 2 and »* = 0.8586.

In general, g(r) has at most few zeroes unless C(»)/ C(#) is highly irregular. If g(») does not
have any zeroes, then it is either positive or negative over the region 0<r=1—@. The former
implies that Z'(») is negative (or Z(») is strictly decreasing), and therefore, ¥=1— @ and x =1
are optimal. In the latter case, however, the optimal value of x approaches infinity, which may
be an indication of unrealistic assumptions on the cost function.

5. Concluding Remarks

The rehability and redundancy optimization is basically a mixed integer nonlinear programm-
ing problem. A simple approach is presented with an emphasis on solving the single-stage sub -
problems. A fruitful area of future research may include an investigation of the behavior of the
objective function (11), given the minimal set of assumptions on C(7).
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