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A Multi-Product Multi-Facility Production
Planning Model with Capacity Constraints
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Abstract

A multi-product multi-facility production planning model is studied in which known demands
must be satisfied. The model considers concave production costs and piecewise concave inven-
tory costs in the introduction of production capacity constraints. Backlogging of unsatisfled de-
mand is permitted. The structure of optimal production schedules is characterized and then used

to solve an illustrative numerical problem.
1. Introduction

Zangwill [6] has considered a multi-product, multi-facility production planning model, which is
a linking together of certain single-facility models to form an acyclic network of various facili-
ties. In the model, each facility except the first facility was allowed to receive inputs from raw
materials and one or more facilities, then in each period manufacture a specific product on its
own production line. The product was then stored in inventory until needed either to satisfy
demands for the product or to supply input to other facilities. Assuming that demands for each
product were known, he sought to determine the general form of the minimum cost production
schedule that specified how much each facility in the network should produce. He further assumed
that the production cost functions were concave and dependent upon the production in several
different facilities, that the inventory cost functions were piecewise concave, and the backlog
was permitted.

Lambrecht and Vander Eecken [4] have analyzed a facilities-in-series production planning mod
el with capacity constraints on the last facility and involving concave cost functions. He assum-
ed that one unit of production at any facility required as input one unit of production from the
preceding facility and production was instantaneous, and that no backlog was permitted.

Numerous studies for single-product single-facility production planning problems with capacity
constraints and with (or without) backlog have been done by a number of authors (see, for
example, Baker ef a/ [1] Florian and Klein [2] Florian ef o/ {3] and Love [5]).
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In this paper, the model treated by Zangwill [6] is considered in the introduction of capacity
constraints for production at each facility. The objective is to exploit the structure of optimal
schedules that specify how much each facility in the network should produce so that the total
cost is minimized. As a useful description of the structure of optimal schedules, the dominant

set defined as the set of all extreme points will be proved, based on the partitioning of the
feasible solutions set into basic sets done by Zangwill [6], to contain an optimal schedule. Each
component of such an optimal schedule is associated with a specific faclity and consists only
of subplans each representing “a capacity constrained sequence” defined in Florian and Klein
[2]. Thereupon, an optimal schedule out of the dominant set can be found by doing recursively
a shortest path search for a specific component associated with each facility, starting with the
search for the last facility’s schedule to satisfy the given demands. A numerical example is to

be presented.
2. Model Formulation

Consider a M-product M-facility production planning problem with a planning horizon N. The
individual facilities are linked together to form an acyclic network depicted in Fig. 1, where
Ri=(R], RS, ..., Ry), R} = 0, represents the market requirements (demand) vector for
facility j ( = l,'y 2, ..., M) over the planning horizon N It is assumed that all demands R/ are

fixed and known.
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Fig. 1: The Acyclic Network with M Facilities.

Each facility can receive inputs from either raw materials or lower numbered facilities. It can-
not receive inputs from itself or higher numbered facilities. However, each facility can supply
only higher numbered facilities or demands for its own product. Facility 1 receives raw mater-

ials only and facility N supplies demands for its own product only.
let X!, X4 20, be the ptoduction completed in period ¢ at facility 7 and [ 1 the inventory

at the end of period 7 in facility 7. Let @, =0, be the number of units of facility j's product



required to produce one unit of facility 2’s product. It is assumed that there is no time loss in

transmission of goods from one facility to another, while each facility j can have a time lag 4;

in production and thereby production started in period 7 is completed in period 7+ A; Then,

M

the amount desired out of facility j in period i as inputs to other facilities is > @/* X% ,,
h=j+1

and the total demand on facility 7 in period 7 and the inventory level, denoted respectively by

Y? and I}, are

Yi =R

-

M
+ Z ajh X?+M and
h=j+1
[= Zz (X! — Y4) forall iand j

It is also assumed that each facility can backlog total demand for its product a certain fixed
integral number of periods. Let a; represent the number of periods of backlog permitted for
facility ;. Then, the backlog limit for facility j is

Lz- 2 Y.
h=i— a1

As noted in Zangwill [6], it is always possible to append an artificial extra no cost period and
assume [ fv = 0 for all . (We assume [} = 0 for all ). Finally, assume capacity restrictions on

X X i—aj X i .
each period’s production at eact facility, so that 0 < X! = C/and further h;} Yy £ El Ch

for all 7 and j, where C! denotes the capacity restriction on the production in period 7 at faci-
lity 7. :

Let Z=(X;, X,y .., Xy) = (X}, X}, ., Xpo X5, X350 ooy X3 oo, XY X3 L XN)
denote the production schedule for the entire network, where X/ = (X . é e, X{v) repre-
sents the production schedule (vector) for facility . The problem is now to find a production

schedule Z, called optimal, which minimizes the piecewise concave function

M N )
F(Z)=PZ) + Zl -21 HI(Z)
j=1 i=
subject to

L= X (Xi = Yd)

vl =Rl + X o* Xy,

h=j+1
oz - 3 Y (A)
h=i—ajy}
0= X! = ¢}
1-aj . i )
Z Yl X C}
h=1 h=1

) = 0=1I4 forall iand j



where P(Z) represents the concave production costs among M facilities, and H 2)y=Hi!
(Z)) = Hi(I)) is the concave inventory cost on interval (—oo, 0] and on the interval [0, +oo)
but need not be concave on the interval (—co, +o0). Note that since I’ is a linear function of
Z, the relationship is expressed as I =1I/(Z).

Let X be the set of all the associated feasible production vectors. Then, X is a bounded
polyhedral set and is thereby convex and compact. Any Zin X is called feasible.

3. Construction of Dominant Set

Zangwill [6] has shown that for a general acyclic network composed of facilities with no ca-
pacity constraints there exists an optimal schedule in a set called the dominant set, which is
the set of extreme points out of the compact convex sets on which F( -) is defined cancave.
This was verified based on the property that the set of all feasible production schedules can be
partitioned into disjoint subsets, called “basic sets”, in which the 7** components [(Z) of each
I(Z) (each Z) in a basic set all have the same sign for 7=1,2, ..., Nand j=1, 2, ... |, M.
This partitioning will also play a central role in our approach.

Following Zangwill [6], such a basic set B is defined as

Bi= (Zlze X: (—=1)% P(Z)=0forall iandj},

where k= (k!) is a M - N component vector with M(j —1) + ¢** component k% such that k!
is +1orQonly, and 2 € K= {k=(kJ) |k = +1or O0only}. Then, Br is the set of all
feasible schedules Z that in facility j period 7 give rise to nonnegative inventories if kl=0 or
nonpositive inventories if £/ = +1. Evidently, each B is compact and convex, and hence F(Z)
being concave on a particular B+ can be minimized on Bk at an extreme point of Bk Further-
more, X is the union of all 2% basic sets; that is, X= U  Brk Letting E[B] donote the

keK
extreme points of a basic set Bk, F(Z) must be minimized on X at a point in D= U E
ke K
[Bx], where D is called the “dominant set”.
For convenience, let Z/ = (X7, X/*!, ..., XM) be defined as a partial production vector in
facilities j through M. The vectors Y7 = (Y4, Y%, ..., Y4) and R/ = (R}, R}, ..., RY) rep-

resent respectively the total demand and the market requirements for facility ;. Then, a partial
production vector Z* is said to be feasible if the constraints of the problem (A) hold for ali
j=h and all i Similarly, if Z¥7 is feasible, X* is said to feasibly supply Z"*! if the partial pro-
duction vector Z*=(X* Z*1) is feasible.

For constructing D, our approach is now started with Lemma 1 (referring to Zangwill [6]).

Lemma 1.
If two vectors Z and Z are in the same basic set Bi, then I/ 20 iff }=0 for all ; and J.

and conversely.

Let D[r] be the dominant set if a single-facility model has market requirements »=(r,, 7,,....,
7y). As done in Zangwill [6], by using D[r] recursively the dominant set for the entire M fa-
cilities acyclic network can then be constructed. Consider partial dominant set D! constructed



from facilities & through M. D*, b =1, can then be constructed by induction when D*®*! has
been constructed.

Let Z¢*! be in Db*1 . Zb* does completely specify Y?. Letting Y*(Z**™') donote Y% s
dependence on Z®*!, D[Y*(2**!)] would be the set of all X* in the dominant set if facility
b were considered to be a single facility facing market requirements of Y*(Z°*!). Therefore,
for each Z°*' € Db+l D[Y*(Z**')] can be constructed. Therewith, D consists of all partial
production vectors (X?, Z%*!) such that X is in D{Y*(Z**1)] for a Z**' € D®*1 Thus, D*
= Zb41 LEJDb+1 P(X?, Zb*) | Xt ¢ D[Y**)]} . This construction is continued until D! is
constructed.

Before demonstrating that D! is the dominant set, it is necessary to refer to the set of all
feasible schedules consisting only of “capacitry-constrained sequences”, defined in Florian and
Klein [2], which characterizes all the extreme points of the solution set for a single-product single-
facility model with capacity restrictions. In a capacity constrained sequence, the production
level in at most one period d, #+1<d< v, is partial production (i e, 0<X Z<C§ in a feasible
schedule X* for facility &) and all other production levels are either zero or at their capacities,
and further If +0 for u+1<t<vbut I’=0=1° for 0 <u< v<N. The associated solution set
characterization is specified in Theorem 1.

Theorem 1. 1
i i—at+

(a) Given a facility &, 1= b6<M, if I =0 for some % € {1, 2,..., N1} and Clz ¥
J=h+1 j=h+1

Yf (t=h+ays,..., N—1), then the original problem is decomposed into two parts; one part for

the first % periods and the other for the last (N— &) periods.

(b) X* and X* are distinct feasible schedules and X* = -%()—( (% 5), then X°* and X* share
all the regeneration points (zero inventory points) of X°.

(¢) A feasible solution is an extreme point iff it is composed solely of capacity constrained
sequernces.

The results of Theorm 1 will be useful in proving that D! is the dominant set D, since
the solution set characterization for a single facility model can be extended by induction to
the general M facilities network. In fact, given a partial production vector Z°®*! and the total
demand on facility b, Y*=Y?%(Z**!), then a feasible schedule X* consists only of capacity
constrained sequences iff it is in D[ Y?*(Z%")]. In other words, letting Z be in D3, and X*
and Z*™ be components of Z so that X% is in D{Y*(Z**1)], then X* consists solely of capa-
city constrained sequences for the demand Y?*(Z?%*1).

Lemma 2.
Let Q(Y’) denote the set of all feasible production schedules for a demand vector Y7=(Y7,
Y},..., Y4) at a facility jG=1, 2,..., M). Then, Y7 e Q(Y’) and further Y’ & D[Y/]

t—aj . ¢ )
Proof. For every production schedule X’/ € (Y7), it holds that hz,’l ’ Y, < hgl Xi  and

a

-~
|

e

. Yi < ;.Z C) for all £=1,2,...,, N. Therefore, Y7 is included in Q(Y7). Furthermore,
=1



N N . .
since hgl X =h§ Y4 from the constraint /y =0 and hence the set Q(Y7) is compact and

convex, it is evident that the vector Y/ is an extreme point of the feasible set Q(Y9).

Lemma 2 indicates that in the problem (A) the total demand vector Y?* at facility & is itself
an extreme point of the set of all feasible production schedules to satisfy the demand Y?*, and
hence it consists only of capacity constrained sequences coresponding to the associated capacity
constraints. This leads to Lemma 3.

Lemma 3. B . B A

Let Zb*l, Zb+1 Zb+1 he feasible partial production vecors such that Z**! # Z¢*1 and Z
b+1 :%(Zbﬂ +2”“), b=1. Assume X* feasibly supplies Z°*! and it consists only i)f capacity
constrained sequences for/\ Y®(Z**"). Then, there exist production vector_s Xi and X /\b th?t fe-
asibly supply Z**! and Z**!, respectively, such that (X*, Z*1)=-3[(X?, Zb+1)+(X?b, Zb+1)].
Furthermore, 1°=0 iff I 20, and 7° 20 iff 7° 20, for all =1, 2,..., N

Proof. Z%*! is not an extreme point. Theorm 1 indicates thereby that there exists at least
one facility 7, 6+1<j <M, having a production sequence S’, for 0 <u <y <N (definedas S,
=X}, i=u+l,..., v|E=0=F: [l £0 for u<i<wvlfor a feasible schedule X’), in which
there are at least two periods ¢; and ¢,, #+1=1¢,<{, < such that O<X{l< C{I and O<X{z
<! According to Lemma 2, there is an extreme point X® for Y* (Z**1) such that X* =
Y¥(Z%*1). 1t is then seen from the capacity constraints of the problem (A) that the two
periods £, and ¢, are also partial production periods in the schedule X*; that is, 0< X f’l<
C and 0< X7, <C,

Let €Z%min (X7, Co— Xi, Xi,,C/, — X! | . Define Y=Y ~¢ Y=Y +eV] =
Y:’l + ¢, Y,i= Y,bz— e and Yi = Y'= Y’ for all ¢ except at {1 and 2, where Y,’7 is the #*
component of Y*(Z**!). Since € >0, we can have the associated feasible production vectors
X* and X in which X* = X* — eUs,+ €Uy, and X®= xt+ €U, — €Uy, where U; is a N com-
ponent vector with a unity element in the ¢** position and zeros elsewhere. It then follows that
Xt = 2 (X +X%) and further (X*, 2°%) = 2{(X*, Z'*) +(R?, Z+*)]

It remains to prove that 7° =0 iff 7° =0, and I° 20 iff I 20 for i=1,2,..., N. If I’ =0,
it implies that ..‘;21 X} gh;zl Y. Since I? :E Xi—vn It = éll(xz ~ YD+ (X) — e)—
(Y~ €)} =0 and likewise, 7!, 2 0, and hence 7¢ 2 0 forall 4. I° = 0 Similarly for all i

This completes the proof.

In the same manner, [f < 0 implies I f§0 and f ,-bé 0. We will now prove that D! is the domin-
ant set D.

Theorem 2.

The set D! is the dominant set, 7. e, D1=D.

Proof. Applying Lemmas 1 and 3, it can be easily proved by following the proof steps of The-
orem 1 in Zangwill [6].



Theorem 2 describes how to determine an optimal solution. However, it seems difficult to ob-
tain an efficient algorithm to find a solution vector in the given M facilities case. In particular,
there is a major difficulty in generating the set of all the extreme points at each facility, and
moreover, the problem complexity is greatly depenent upon the associated network structure. In
fact, Florian et al [3] have shown that even the capacity-contsrained single-facility case is in the
class of NP-complete problems. Therefore, we will give a simple numerical example to illustrate
only how to determine an optimal solution.

4. Numerical Example

Consider a 3-facility 3-period problem depicted in Fig. 2.

Raw Material Input

O
e

o

RS
Fig. 2 : The Acyclic Network with 3-Facilities.

Let facilities 1, 2, and 3 have the respective market requirements R! =(2, 3, 4,),R?= (1, 2,
3) and R®=(3, 4, 5), and the respective capacity restrictions of C; =14, C?=8 and C® = 7
. for all i =1, 2, 3. Assume, for convenience, that no backlog is permitted, that A1 = Az = A3=(,
and that ¢ =1 for all j =1, 2. Then, rather than the general shortest path algorithm (iltustrat-
ed with a special case by Florian and Klein [2]), the tree-search algorithm of Baker ef al [1]
(which was shown more practical for reasonable sized problems without backlog) shall be ap-
plied for this problem. In fact, the algorithm was developed based on the optimal solution pro-
perties for capacity-constrained single-facility problems without backlog that if (X l{ L, X ,‘;,)
represents an optimal production schedule at facility &, then 75, (CP — X% Xt =0 for every

. N
i(i=1,2,.., N) and further X, = min {C}!, ¥ R?}, where t= max {i|X"*>0} and R!
i=t

represents the demand at facility & in period =
Let the production and inventory cost functions be given as

P} (X) = p(X), H! ()=3 H(U),
PI(X) =2 p(X), H: () =2 H(),
P3(X)=3 p(X), and H3 () = H(D), for all 4



where P! is the production cost function of facility j in period 7, p(X) =38(X) +5X for X
=0, HU) =3[ for =20, and 6(X) is the index function for production set-up with value 1
for positive X and zero elsewhere.

The partial dominant set D® is D® =1{(3, 4, 5), (7, 0, 5), (5,7,0), (7,5,0)}. The associated
D? consists of vectors that are written in the form Z? = (X3, X3 X2/X3 X3 X3);that is,

D? = {(4,6,8/3,4,5), (8,2,8/3,4,5), (4,8,6/3,4,5), (8,8,2/3,4,5),
(8,2,8/7,0,5), (88,2/7,0,5), (88,2/570), (873/570),
(7,8,3/5,7,0), (8,7,3/7,5,0), (7,8,3/7,50), (882/7,50)}.

Likewise, D! = D = {(11,14,14/4,6,8/3,4,5), (14,11,14/4,6,8/3,4,5), (14,14,11/4,6,8/3,4,
5), (14,11,14/8,2,8/3,4,5), (14,14,11/8,2,8/3,4,5), (11,14,14/4,8,6/3,4,5), (14,11,14/4,8,6
/3,4,5), (14,14,11/4,8,6/3,4,5), (14,14,11/8,8,2/3,4,5) }.

Since one of the 9 schedules in D is optimal, the cost of each one can be evaluated to find
the least expensive schedule, which is optimal. Therefore, in this problem extreme point
(14,14,11/8,8,2/3,4,5) is the optimal solution, which gives the total cost of 618. However, the
identification of the dominant set D is, in general, a tedious combinatorial problem.

Note that given a demand vector, the algorithm of Baker ef @/ [1] can be applied to find an
optimal solution, but may not be possible to search for some other alternatives. For example,
given X°® = (3,4,5) as the demand for facility 2, the algorithm found the optimal solution, X 2
=(4,6,8), and then selected X! = (11, 14, 14) as the optimal solution for the demands X? and
X3 at the facility 1. However, the schedule Z = (X!, X2, X3) is not optimal. This is because
the algorithm could not select the alternative extreme point X? = (8,8 2) for the demand X?3
=(3,4,5). This implies that in general, the algorithm may not be practical for the general acy-
clic network of M facility case.

5. Conclusion

In this paper we have exploited the structure of optimal production schedules in the general
M facility case. Every optimal schedule consists only of the components each representing an
extreme point of the set of all feasible production schedules for each associated demand vector
on a facility in the given acyclic network. Such an extreme point is composed solely of capac-
ity-constrained sequences. Thereupon, given a facility those extreme points for each of the as-
sociated total demand vectors can be searched by following the shortest path search mechanism
shown in Florian and Klein [2). However, the identification of all the extreme points is, in
general, a tedious combinatorial problem, so that it seems difficult to obtain an efficient algo-
rithm for an optimal schedule. Nevertheless, the exploited structure of optimal production sched-
ules may have many practical meanings in solving small sized assembly networks.
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