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Model Reference Adaptive Pole-Placement Controller
of Nonminimum Phase Systems
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Abstract

A pole-placement control of discrete, deterministic, single-input single-output nonmini-
mum phase systems is considered using a model reference type approach,

The proposed pole-placement controller is designed in the parameter form to make the
transfer function of the controller equal to that of the reference model with only single
variable polynomial S(q!).

The proposed adaptive pole-placement controllr is designed with the true system para-
meters by applying the adaptation method to the proposed pole-placement controller,

1. Introduction

) . puter.
The pole-placement control technique is a
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troller is easily implemented with a digital com-

useful approach to the control of the dynamic
system with known parameters,*?

Such a scheme generally requires simple
computations, so that the pole-placement con-
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From this standpoint, the pole-placement
control system is designed in the discrete form
using reference model.

The schemes by Astrom and Wittenmark
are remarkable in the sense that the pole—place-
ment controller is designed in the general form
based on input-output models,

This paper proposes a novel scheme for
designing the general pole-placement controller
using reference model.

Since we can choose the reference model
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arbitrarily, with only single variable polynomial
S(qi) we can make the transfer function of the
pole-placement controller equal to that of the
reference model,

It is important to point out that the desired
response is obtainable only under the ideal
condition that the cancellation of poles and
zeros as required by the design is exact,

And if the parameters of the plant are
changed by the load disturbances or a little
non-linearity of the plant exists, the control
objectives cannot be achieved easily.

So we introduce the adaptive algorithm to
the proposed pole-placement controller. In the
non-minimum phase system case the only situ-
ation in which global convergence does not
follow is when a pole-zero cancellation is a
limit point of the algorithm,

For these pathological cases '  the adap-
tive scheme is extended to control non-
minimum phase system by introduction of a
suitable criterion function which includes
weighting on the control inputs,

This modification in terms of zero shifting®
is useful in showing the transformation of a
non-minimum phase system into an augmented
minimum phase plant.

These augmentations allow the proposed
pole-placement controller to be used with non-
minimum phase plant,

Computer simulations to illustrate the pole-
placement control and the adaptive pole-
placement control of a realistic non-minimum
phase plant are also included.

II. Design of a Pole-Placement Controller Using
Reference Model.

II-1. Statement of the problem in the linear
Case.

Consider a single-input single-output, dis-
crete, time-invariant plant described by

A @Yyk) = q9B(q!) Uk) ; d>0;
y(0)F 0 1)

where

A(@h = 1+alq'l +—+ anaq'na 2)

(622)
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B(gh= b+ by ql+—+ ban'nb ;

boabo 3)

{d} represents the plant time delay, {u(k)} and
{y(k)} are the plant input and out, respectively.
A(qQ') and B(q!) are relatively prime poly-
nomials in the delay operator q'!, and B(q})
is factored as B(q'!) = B* (q'!) B~ (q’!) where
the zeros of B* (1) are allin | q | <1 and the
zeros of B~ (q!)areallin |q|>> 1, and

+
B*(@1)=1+b;,q' +—+b .q°" (4)
B (@Y= b0+b1_q'J + -+ bnb_q'nb- (5)
A reference model is given by
-1 - g4 -1
A Q)Y (k) =q B_(q)U (k) ()]
where

Am(q'l) =a o+ amlq'l+ — amaq'ma N

mb

(8)
U, (k)] and {Y (k) are the reference model
input and output, respectively, and A (ql)is
an asymptotically stable polynomial, and

1y g 1y - p— (-]

B (c!1 ) is factored as B, (@°) = B (q")
B,@")

Bm(q'1 ) = bm0+bmlq'1+ —_— bmbq'

where
B;n(q-l )=b o™ bml'q-l et bmb q-mb
9

The problem to be considered is to design a
controller for the system (1) in such a way that
the closed loop satisfies certain requirements on
both tracking and regulation, The tracking (or
reference following) and regulation objectives
are specified seperately as follows,

i) The control should be such that in tracking,
the output of the plant satisfies the equation

Am@™Y(kR) = g 9B (HU (k) (10)

ii) The regulation objectives are specified in
terms of the desired response to initial
errors, assuming that the command U is
zero, Compute a control law such that the
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plant-model error vanishes with the dyna-
mics defined by a monic asymptotically
stable polynominal C(q'!), i.e.

@) [Y(k+d) = Y_(ked)] =0Vk>0  (11)
where

Cqh)=1+Cyq M+ —+Cp g€ (12)

II-2  Design procedures.

The requirements above on tracking and re-
gulation can be fulfilled with a simple design
procedure, basically a pole-placement design.

A first requirement is obtained by using an
explicit reference model (6) and by applying
the following lemma.®

Lemma II-1
Consider the plant (1), the reference model
(6) and the plant control input given by (Fig. 1)

q ‘B(q B Yk}

Anlg")

Ua tkj Balg ') [Yalk+d} ; + 1
Balg?) Clg™" BT _l

Alg’)

J(l\.lq bl le
L2

Fig. 1. Linear control.

- '
U(k) [C(@)Y, (k+d) —

1
" BYaS(@)
An@hHY®) ] (13)
or
Uk) = C(q )Y (ked) — AL (@)Y (K) +

B(q™) Uk) (13-2)

with
By(qh) =1-B*q") s
where

S(q!) = 1+Slq'1 +——+S ¢ q?ms 14)
B’ (q)

Y ®=qd M "y (15)

verify the identity

c @™ = A@Hs@H+a 9B (DA @)
(16)
Then
(1) An initial plant-model error or an initial
output disturbance converges to zero with
the dynamics of the C - polynomial, i.c.

c(qek+d) =0 Yk = 0= lim e(k)=0
k>*
a7

where

ek) = Y(k) — Y (k) (18)

(2) The transfer function from Um(k) to Y(k)
is given by eqn. (10).
(3) If one chooses
ng =20 ;N =max (na+ns,d+ng m,)
then we can obtain a monic asymptotically
polynomial C(q!) by using a polynomial
s(q™).

Proof.
Using eqns. (1), (6), (13) and (15), eqn. (17)
becomes

it

c(ghek+d) = C(q) [Y(k+d)-Y (k+d)]
[A@Hs(@H+q9B7(q )
Ap(@HI Y(k+d) ~ C(q™h)
Ym(k+d)

B(q 1)S(qHUK)+B (g })
AR@HY (R — @Y (k+d)
=0 19)

From eqn, (1), (6) and (13)

cqh
A@Y s@H+qB (@A @D

Y(k) =

q987(gHB'm(q")

- Upk) (20
An(a?)

and using the identity (16) one concludes that
(20) is identical to (6). [}
Let us rewrite (13) and (19) in the parameter
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form

U(Kk) = [C(q" )Y m(k+d)—Am(q) Y (k)—
~P'9 (k)] (1)

c(q'!) e(k+d) = B(q"!) [Uk)+Am(q )Y (k)-

(g Y mk+d)+PTok)]

22
where (22)

¢T(k) = [U(k-1)U(k—2) ~U(k-ny,-n)] (23)
PU= [Sy+by,  sprby, syvby, by, s, ]
Thus we can control a general non-minimum
phase system using reference model.

Note that in some cases, it would be desir-
able to use B'm(q'l) instead of Am(q'l) to
satisfy the identity (16).

And also in the minimum phase system case
it is shown for the algorithms in [6] that
{Y(k)} tends to {Ym(k)} . We do not make this
claim for the general case. In fact it is clear
that this is always impossible when the system
does not have a stable inverse, Thus, special
consideration has to be given to the question of
steady-state errors in the output sequence.

If required, integral action can be incorpo-
rated into the pole-placement controller in a.
straight forward fashion.

This may be achieved by requiring that the
polynomial S(q'!) have the form

(@) = 1—-q1H¥ s, (@Y. (24)
II. Design of an Adaptive Pole-Placement

Controller

In the previous section, we have calculated
the coefficients of S(q'l) to obtain a monic
asymptotically stable polynomial C(q!), but
in this section, we employ adaptive alrotithm
under the obtained monic asymptotically stable
polynomical C(q!) to adjust the parameters
of the controller.

For the control of non-minimum phase
systems we have to make J (the criterion func-
tion) arbitrarily small and yet U finite.

This can be achieved by incorporating a
criterion function that allows the control input
to be weighted,

With such a facility non-minimum phase

(624)

19855 118 BFTHEE £ 2% H 65

systems can be easily controlled by the appro-
priate weighting on U to give a finite J and a
bounded U.

Let us define the output, Y', of an augment-
ed plant as

Y'(k) = Y(K)-M(q"!) U(k—d) (25)

where M(q!) is a constant polynomial in q?l.
M(q'l) is a chosen such that all the zeros of the
augmented plant lie inside the unit circle in the
Z-plane.

To eliminate steady-state offset the M(q'l)
polynomial has the form

M(@hH=M' 1-qgHH™m (26)

Then we can use the controller of Fig. 1 in
section II.

It is natural to replace the vector P in (23)
by adjustable parameters p(k) which will be up-
dated by the adaptation mechanism,

Therefore the control U(k) in the adaptive
case is given by

Uk) = [C(@) Y (k+d)—A_(q)Y'(k) —

PT(k) ¢ (k)] Q@7)

which can also be written as

c(qh) v, (k+d) = A_(qH)Y'(k+PT (k)9 (k)

(28)
where

5Ty _ (1 T
pX) = (b (k) : PRR))
¢T(k) = [UK) : 3T (k)]

Introducing (28) into (22) and defining the fil-
tered error as
ef(k+d) = [A_ (@)Y ()—C(qH) Y, (k+d) +
Pl o (k)1 (29)

one obtains
ef(k) = [P~ (k—)] T g (k—d) (30)
where PT= [bo : PT]

6T (k) = [UK) : ¢"(k) ]

Let us define the auxiliary error as
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ek) = [P (k~d)—P (k)] "9, (k-d) (1)
and the augmented error as

e" (k) = el(vec) = [P ~B (k)]” ¢ (k—d)
(32)

To evaluate the deviation between the
augmented plant and the reference model, we
introduce the following criterion function:

k s — ~
I = T NGNS YO-BI ) ¢,G-d)1? (33)

where A is a weighting coefficient given

as O <)\1 <1,)\2 =1 ')\1 and?(k) =
C(qHY'(k) - A ()Y (k-d)

The estimate P oK) is determined so that the
criterion function J(k) becomes minimum at
each k.,

Letting the gradient of J(k) with respect to
f’o(k) be zero, and employing the matrix inver-
sion lemma, we can obtain the following re-
cursive equations,

P (k+1) = P_(k)+L(k+1)
[V(k+1)—B (k)76 (k—d+1)] (34)

1
Pk+1) = 3 [1-L(k+1)¢  (k—d+ 1)1 T(K) (35)

I'k) ¢ (k—d+1)

M

(36)
T I'(k)
")‘: + ¢o(k—d+1) —3\—1‘¢0(k—-d+1)

L(k+1) =

We can avoid unnecessary storage and im-
prove both accuracy and computational effi-

ciency by applying UDUT factorization
methods.”
To obtain gain L(k), let us define following
algorithm.
Let T
f=U (k-1) ¢ (k—d) 37
V=D(k—1) f/\; (38)
where
=, £,—1]

(625)

VT = [VI V2 - Vn]
Vl = dl (k—l) fl/xl (1=1 12’ - Il)

r ==2+ Vi (39)
A2
r nl
K5=[V,0-— 0] (41)

For j=2,3,—,ncycle from (42) to (46)

I‘j = rj_l + Vlfl (42)
d.(k—1) r.-3

d.(k) = _J o (43)
J 1 r.
]

Uj(k) = Uj(k—1)+ijj (44)

here =— fj

wiher w. = r_ (45)
-1

Kj+1 = Kj+VjUj(k-1) (46)

where Uj(k—l) is the j-th column of matrix

Uk-1)

L(k) = Kn+1 (47)

"n

IV. Sensitivity to Modelling Errors

It is highly unrealistic to assume that the
mathematical model of the plant used in a con-
trol design is accurate. Therefore, it is impor-
tant to understand how modelling errors will
influnce the closed-loop properties, which is
discussed in this section,

It is assumed that the control design is based
on the mathematical model

u=99B@h)
A@h

while the true model is o_ q_'dBO(q_l)
A% (@M

The control law of (13) represents a com-
bination of a feedforward from the command
signal U, with the pulse-transfer function

cqHB (@)
B (g hHs@@hA (@)

Hge(q™) = (48)
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and a feedback from the measured output Y
with the pulse-transfer function

- -1
B*(g)s(q™)

The following result ¥  describes the influ-
ence of modelling errors on the stability of the
closed-loop system,

Theorem IV. 1,
Consider a pole-placement design based on
an approximate model

= 99B@H
Aqh)

Let H be the true pulse-transfer function of
the plant to be controlled. Assume that H and
H® have the same number of poles outside the
unit disc and that H, is stable, Then the
closed-loop system related to H® (q'!) is stable
if

HQ™") |[Hg(qh)

“1y_1q0/4"1 — =
[H(q)-H"(q )1 < Hm(ql)| Hfb(ql)’
(50)

for | q'| = 1, where Hgp and Hyy are defined

by (48) and (49), respectively.

Proof.
Loop gain is

q. = 9B (@HA @

-1 -1 (1)
A(qQ*)S(qh)
It follows from (16) that
cqh H
14H, = ———— = = He (52
Hig= a@h sl Hy e 62

3

After multiplication by Am(q'l)
B (qHs(q™)

the condition given by (50) can be written as
_1 -1

AL(q?) An(a™)

— H®
B*(q1)s(q) B (qh)S(q™)
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3 H\ ‘1 B
L - +
H  ff 1g
(o]
or ng—ng < 1+H1g
Hence,

H(q’l ) l Hie @
H_(q)) | Hpp(q )

H(q!) - Ho(qH) | <

V. Computer Simulations

We present in this section simulation results
illustrating the controller designs in section II
and III acting in tracking, parameter disturb-
ances and regulation,

The non-minimum phase plant before a
parameter change occurs (k < 11) is represent-
ed by:

q1(0.51+1.21q7Y)
1-0.44 q’!

Yk)= U (k) ;Y(0)=0.05

(53)

This plant corresponds to an open-loop
description of a condensation polymer process"

At time k=1, a change of the plant para-
meters is made,® The plant is then (k 2 1)
characterized by

vag= 9104+129 yay (s
1-0.1q?!

At time k=12, the plant is made to the
original state as equation (53) (k = 1,).

At time k=1,, the input of the reference
model is made to zero. (k =1 3)-

In this simulation, 1,=100, 1,=200 and 13=
300 are chosen.

For the simulation of the controller in
section II the reference model is chosen, arbi-
trarily, as ;

-1
Y (k =q1 0.2(0.51+1.21q ) U (k) (55)
m(k)=q 1-0.312q7 m

hence

Yy, & =q" U, k) (56)

1-0.312 q}

(626)
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where Um(k) represents the setpoint.
We choose S(q!) as (l—q'l)(1+0.5q'1).

Then PT=[-05 -05]
and  C(q')=1-043q1+0.77088q% —
0.15752q"°

For the simulation of the controller in sec-
tion III the augmented plant is chosen as :

-1 -2
Y'(k) =q‘l 2.51'—1.67(] +0.88q U(k)
1-0.44q’! (57

where M(q‘l) is chosen as —2(1—q'1) to eli-
minate steady-state offset,
And the reference model is chosen as:

0.25
1-0.5q"!

Ym(k) = g’ Um(k) (58)

We choose S(q1) as (1—q’1).

Then  C(q™!)=1-0.44q1-0.06q2.
And 7 =0.91, \,=0.09,
PoT(0) = [-2.5 —4.0 —2.0 0.0]
3]
% 1
3ol
f;]
L
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Fig. 2. Output response of the section 2.
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V1. Conclusions

We have proposed a novel scheme for
designing the pole-placement controller and its

(627)
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Fig. 4. Controller parameters of the Fig. 3.

application to an adaptive pole-placement con-
troller using reference model,

The design procedure of our scheme is sim-
ple and systematic, and the control algorithms
can be easily implemented with a microcom-
puter.

The plant to be controlled has not been
assumed to be either stable or stably invertible,

Computer simulations illustrating the per-
formance of the algorithms have also been given
for the realistic non-minimum phase plant,
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