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Fast 2-D Moving Target Tracking Algorithm
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Abstract

We have studied on the 2-D moving target tracking algorithm satisfying a real-time hard-
ware implementation requirement. In this paper, a fast algorithm is developed based on the
operatof formulation and the variational algorithm [10]. Here, we use the directed search for
the maximum of the cross-correlation in order to obtain an initial estimate for the variational
algorithm and decompose the scene into 16 smaller subblocks and apply the variational algo-
rithm to each subblock sequentially with a new moving area detection method. We call the
algorithm subblock based recursive algorithm. Compared with [10], the ratio of the compu-
tational savings obtained from the proposed algorithm is 7 on the average.

teleconferencing, videotelephone, robotic vision
system, surveillance, and television and satel-
lite image transmission. Most of the works in
the last several years were concerned with rigid
bodies moving on the 2-dimensional plane
[1-10, 15-17]. Elsewhere, the interpretation
of 3-dimensional motion using 2-D motion
estimation or correspondence has also been
studied [18-20].

Basically, there are two different mathe-
matical approaches in moving target tracking:
‘correlation techniques [15-17] and taylor

I. Introduction

Recently, computer analysis of time-varying
imagery has gained attention in the field of
image understanding. One of the interesting
problems in this field is a moving target track-
ing, which has a numerous applications in
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vive geometric distortion [15-16]. J.K. Jain
and A.K. Jain [17] also used the cross-correla-
tion to find the displacement vector. Taylor
series expansion is commonly used to estimate
the 2-D motion of a rigid body, Limb &
Murphy [1,2] proposed a simple and somewhat
intuitive algorithm which was derived mathe-
matically later using linear regression [4,5].
However, this algorithm operates poorly with
low resolution images or images containing
thin edges. Cafforio & Rocca [3,4] proposed
a linear regression approach based on the
first-order terms in taylor series expansion.
But because of first-order approximation, the
estimation is limited to relatively small displace-
ment. Netravali and Robbins [5,6] discussed
a recursive algorithm which seeks to minimize
a functional of the motion-compensated predic-
tion error. They discussed the method that
can improve estimation accuracy for large
displacement by linearizing the intensity func-
tion around an initial estimate. Schalkoff and
McVey [7,8] presented a mathematical model
for tracking translation, rotation, and dilation

using 2-D affine transforms. They showed that
for small target perturbations the 2-D tracking
problem could be approximated as a 1-D time-
varying parameter estimation problem, Flachs
et al [9] proposed a prototype realtime video
tracking system using extensive parallel proces-
sing to track a missile-type object. The essence
of this algorithm is a Bayesian pixel classifier,
aided by fuzzy set logic which forms a binary
picture subdivided into target, background, and
plume regions.

Recently, Legters and Young [10] develop-
ed a mathematical mode! using an operator
formulation for a moving object in a sequence
of image. Time-varying translation and rotation
operators were derived to describe the motion
and variational algorithm in conjunction with
predictive Kalman filter was used to track the
dynamic parameters of the operator. The
operator formulation and variational algorithm
will be briefiy discussed in section 2. The
operator concept is important since it describes
the evolution of time-varying target in a simple
and mathematical way. The proposed algori-
thm works quite well in tracking moving
target, however the computational burden in
real-time implementation is quite enormous.
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Traditionally, the gradient algorithm utilizes
a time-consuming search technique to find
minimum or maximum value of a function
containing several parameters. Generally, the
computational load becomes large as the size
of image grows. Furthermore, real-time opera-
ting Kalman filter is too complicated and
expensive in these days. In order to employ
this algorithm in a real-time environment,
modification or new algorithm is needed.

The purpose of this paper is to introduce
a fast motion tracking algorithm satisfying a
real-time implementation requirement. The
approach used in this paper is somewhat
similar to the variational algorithm in [10],
except that here we used directed search
algorithm [14,17] instead of Kalman filter
to get an initia]l estimate and decomposed
the scene into smaller subblocks and applied
the variational algorithm to each subblock
sequentially with a new moving area detec-
tion method. We shall show that this approach
could save a significant computational load
because of a smaller subblock size, Two im--
portant assumptions were made in this paper
to simplify the tracking problem: Target/
Background separation (segmentation) pro-
blem has already been sloved (i.e., test image
used for the simulation is binary image) and
changes in the consecutive scenes are gradual
enough so that scene differences may be
properly expressed using an operator formu-
lation.

The directed search method used for obtain-
ing an initial estimate for the variational zlgori-
thm is explained in section 3. Moving area de-
tection scheme and fast motion tracking algori-
thm are discussed in detail in section 4. The
results of moving target tracking experiments
and the quantitative c¢omputational savings
obtained from the proposed algorithm are
described in section 5.

II. Operator Formulation & Variational
Algorithm

A general two-dimensional time-varying
noiseless scene S consists of time varying target
O and background scene B which has possibly
contain a stationary object. In this section, we
review briefly the operator formulation and
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the variational algorithm discussed by Legters
and Young [10]. We will use the algorithm
with a modification of the intensity gradient
approximation directly in developing a fast
algorithm.

1. Operator Formulation

The time evolution of the target scene O
is described by an operator T such that

O(x,y;t+1) = T()O(x,y 1) n
Note that the operator T is time-varying and it
is assumed for convenience that t is nonnegative
integral-valued, and the consecutive scenes are
separated by one unit of time typically 1/60-
1/30 second in TV scenes. From [10], the
translation operator is in the form of

T(u,v) = exp [-u(d/9x)—v(3/0y)] 2)

and the rotation operator is
R(#)=exp[ §(y—b)(0/9x)—-8(x—a)(3/3y)] (3)

On the assumption that segmentation problem
- has already been solved (i.e., the functions 0
and B will be considered as binary-valued
functions), the scene at time t may be modelled
as
S(x,y)=0(x,y;t)+B(x,y)[ 1 -O(x,y;)]  (4)
and from (1) and (4), the scene at time t+1
may be expressed as
S(x,y; t+1)=S(x,y;t)+[1-B(x,y)] (5)
[T(t)-1] O(x,y;t)

Since the moving target of the entire scene
is of primary interest and no prior knowledge
of the target is assumed, differencing of con-
secutive scenes will eliminate some uninterest-
ing background information., For instance,
the stationary object in the background is
eliminated by differencing. Define the dif-
ference scene as

D(x,y;t)=8(x,y;t+1)—S(x,y;t)

={1-B(x,y)][T(t)-1]O0(x,y;t) (6)

7

It is clear from (6) that difference scenes de-
pend primarily on the moving target only. We
assume the difference scenes, similar to the
moving targets, can be expressed in terms of
operators, as given in (7).

D(x,y;t+1)=T(t)D(x,y;t) €]
Also, substituting (6) into (7) yields
D(x,yt+1)=[1-B(x,y)] [T(t+1)—
(8)

1] T(H)O(x,y;t)

If the changes in the consecutive scenes are
gradual enough so that T(t+1) equals approxi-
mately T(t), (8) is reduced to (6). This fact
justifies the operator formulation to the
difference scenes. It should be also noted that
if the parameters keep changing rapidly from
scene to scene, it may be necessary to use the
original scene instead of the difference scene.
It should be also noted that if the parameters
keep changing rapidly from scene to scene,
it may be necessary to use the original scene
instead of the difference scene.

2. Derivation of Variational Algorithm

With the operator approach, the error used
in deriving a variational aigorithm is a quadratic
form

E=XT (D-D)?
=TT [T(HD(x,y;t)-D(x,y;t+1)] 2
Xy

9)

where the hat indicates the estimate. The vari-
ational scheme seeks to find the appropriate
parameters to minimize the mean square error
defined in (9).

A. Translation

With a translation operator T(u,v)=T(Q,7),
the resultant discrete version of the gradient
search direction is expressed in the form of

(10)[10].

aE/aﬁ=—2§E[f)(x,y;t+1)_D(x,y;m)}

N (10)
(0/0x)D(x,y;t+1)

(77)
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where the discrete version of the intensity
gradient is

(8/3x)D (x,y;t)= D(x+1,y;)-D(x,y:t)

Since the segmented image has only the value
of 1,0, 0r —1, (11) has the possibility of missing
the negative or positive edge of a target.

(3/0)D(x,y;t)=[D(x+1,y;t)—

~D(x—1,yi1)1/2 (12)

We used (12) for the intensity gradient calcu-
lation. Throughout the experiment, (12) is
found to give more accurate gradient direction
than (11).

A similar derivation to the y-direction leads
to

aE/ae=_§§[ﬁ(x,y;t+1)_D(x,y;t+1 )]

[ﬁ(x,y+l ;t+1)—f)(x,y—1 t+1))

The variational scheme adjusts the value of u
and v until the two gradients 0E/d0 and dE/ov
change signs or vanish at the same time, indicat-
ing convergence. Clearly, the parameter value
must be increased if the gradient has a negative
value and decreased if positive value. Since
the higher order terms of taylor series expan-
sion is neglected in this approach, the vari-
ational scheme may converge to a local mini-
mum or it may diverge., Generally speaking,
convergence to a giobal minimum will depend
on the goodness of the initial estimate. There-
fore in section 3, we will discuss the method
of finding the initial estimate in a straight-
forward manner that does not include any
approximation.

B. Rotation

The tracking of a rotation consists of esti-
mating the angular velocity, 8, and the center
of rotation (a,b). The rotation operator R de-
rends on 8, a, and b, and hence the gradients
BE/aé, dF/da, and BE/BB are derived. Replacing
T by R and @ by § in (10), the resultant gra-
dient for 8 is

11y

13)

BE/30=—ZZ[D(x,y;t+1)=D(x,yt+1) ] (x—4)
[D(x,y+1;t+1)—D(x,y—1:t+1)]
+ZZ(D(x,yit+1)~D(x,y;t+1)] (y—b)
[D(x+1,y;t+1)—D(x—1,yit+1)]

and with a derivation very similar to that of a
translational case, we obtain the gradient ex-
pressions for the center of rotation (a,b).

9E/3a= TI[D(x,y;t+1)=D(x,y;t+1)18
[D(x,y+1;t+1)—D(x,y—1;t+1)]

9E/ab=—ZZ[D(x,y;t+1)~D(x,y;t+1)18
[b(x+1 ,y;t+1)—f)(x— 1yt+1)]

Here again, it is noted that a and b should be
integer-valued, and the variational scheme fol-
lows exactly the same method explained in
the translation case using the gradient values
of (14), (15), and (16).

HI. Initial Estimate for The Variational
Algorithm

Extensive simulation has revealed that the
variational algorithm described in section 2
is very sensitive to the initial estimate be-
cause this algorithm include several sssump-
tions and approximations. Therefore it is
necessary to find the initial estimate for the
variational algorithm in the straight forward
manner, The Kalman filter approach used
in [10] has been proved to provide a relatively
good initial estimate, but unfortunately, it is
considered too complex and expensive for
realizing a real-time tracker. Thus a simple
and accurate method to find an initial estimate
for the real-time implementation should be
developed. In this paper, we use the correla-
tion technique, simplifying the approach of
Jain [17] which includes no approximations.

In the translational tracking, the neces-
sary parameters to estimate are u and v. The
error expression in (9) can be rewritien as

E(u,v) = E§[D<x,y;t+1)—D(x-u,y~v;t)] 2an
X

(14)
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It is noted that the expression E(u,v) is used
to emphasize the fact that the error E is a
function of the displacements u and v. Now,
define a crosscorrelation between D(t) and
D(t+1) as

L(u,v)=§§D(x,y;t+l)D(x—u,y—v;t) (18)

Since different estimates will not change
$ID?(t) and ZZD?(t+1), minimizing E de-
fined in (17) is equivalent to maximizing the
cross correlation L. The directed search with
L is more efficient because the calculation of
L can be realized in hardware using ‘and’ logic
and accumulations. Thus we search for the
maximum correlation L instead of the mini-
mum of error E using 2-D directed search.
It is noted that since the initial estimate has
only to guarantee the variational algorithm
td converge to the real displacement, the
exact displacement may not be needed in
our case, As a means of obtaining an initial
estimate, we crudely measure the displacement
using the directed search and use the measure-
ment as an initial estimate for the variational
algorithm. Hence we restrict the search area
'to 5x5 , thus obtain the submaximum of cor-
relation. In each step, we search five locations
which contain the center of the area, and
the midpoints between the center and the
four boundaries of the area along the axes
passing through the center. This procedure
continues until the maximum correlation is
under the center of the area. The searched
displacements, u and v which give the sub-
maximum correlation are used as an initial
estimate for the variational algorithm. The
algorithm is expressed as follows:

Let’s define a set S as
$=1(0,0),(2,0),(0,2),(-=2,0),(0,-2)

Step 1: (Initialization) u=v=0

Step 2: Find (i,j)€ S such that L(u+i,v+)
is maximum.
If i=j=0, go to step 4; otherwise go
to step 3.

Step 3:u = uti, v «— v+, S — S—(—i, —j);
go to step 2.

Step 4: u — U+, v — v+, (u,v) then gives the
submuximum correlation.

79

In the rotational tracking, the necessary
parameter to estimate is three. 3.D directed
search may be certainly conceivable, but the
amount of required calculation to estimate
the motion becomes very large. We can avoid
this problem by simply assuming that the
center of rotation is allowed only on the
boundaries of the center of gravity of the
target. This means that the initial estimate
of the center of rotation is crudely decided as
a point near the center of gravity, and only
the initial estimate of angular velocity is finely
estimated using a 1-D directed (binary) search
[14]. Practically, this assumption is appro-
priate because any motion without deformation
can be generated on the assumption above,

IV. Development of the Fast Algorithm

So far we have discussed the motion track-
ing algorithm using the correlation technique
to get an initial estimate and the variational
algorithm. Since the estimation process must
scan all the interior pixels of the scene, the
amount of computation in the estimation pro-
cess is proportional to the size of the scene.
The variational tracking algorithm [10] has
been proved to be accurate in motion estima-
tion. Though they use a binary scene to al-
leviate the computational load, the algorithm
is still inappropriate in the sense of real-time
hardware implementation because of heavy
interations with a large size of scene. It is
noted that the amount of computation be-
comes increasing as the size of the scene grows
larger. Hence the computational burden may
be decreased if we use a small size scene. How-
ever in this situation, the accuracy of the
algorithm becomes poor since the spatial
resolution is also decreased. Therefore it is
necessary to derive a fast algorithm without
any sacrifice in the spatial resolution. We
will introduce a fast algorithm which brings
out considerable savings in the computation
and which is easily implementable in hardware.

In the first step, the target in the entire
scene is windowed, and only the target region
is involved in the computation of the estima-
tion process. The window used here is a
simple rectangular window including all the
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target - pixels and simultaneously set up as
small as possible, Hence the size of the window
must depend on the size of the target. If the
target size is large (i.e., the window size n
large), a fine spatial resolution of the target
is obtained and a good estimation may result,
but on the contrary the necessary computation
becomes larger. This problem is equivalent
to the problem of deciding an appropriate
target size in the entire scene. In this paper,
we have decided to use 64x64 size window
throughout the experiments, and this choice
turned out to be a good compromise between
the conflicting desire for getting a fine resolu-
tion of a target and for lessening the necessary
computation. )

In the second step, the target region is
again decomposed into a few small subblocks.
Each subblock has a same size and rectangular
shape like a window. Each subblock should
be determined whether 2 moving area or not.
Moving area detection is based on the size of
a difference scene in each subblock because
the size of a difference scene depends on the
displacement. Since we assume that the seg-
mentation problem has already been solved,
the target region has the value of 1 and O else-
where, Therefore, the difference scene is
masked to zero, one, or minus one. The size
of a difference scene is defined as the number
of pixels that have nonzero values. The moving
area decision of a subblock is accomplished by
the threshold method. In this paper, we in-
troduce a frame-to-frame adaptive threshold
method which is described as follows

if TLL(t) <size(ij;t) <THH(1), {19

then (ij)—th subblock is a moving area

with

TLL(t)=max {DSIZE(t)/div, mins]
THH(t)=(size of subblock)-TLL(t)

where

DSIZE(t) =size of a difference scene in the
target region at t-th frame
size(i,j;t)=size of a difference scene in (ij)
th subblock where (i) indicate

(80)
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the subblock located on i-th row
and j-th column (See Fig. 1)
mins=minimum threshold allowed
div=scale factor

DSIZE(t) and size(t) are easily calculated by
accumulating the pixel intensities since the
intensity has the value either 0 or 1 when the
positive part of a difference scene is used, and
0 or —1 when the negative part is used. When
both the negative and positive part are used,
they are also calculated in the same manner
as above because the value of 1 and —1 is equal
in the least second bit of twos-complement,
Mins is necessary to limit the minimum size
of a difference scene in a subblock because
too dow threshold do not yield a good estima-
tion. Selecting the value of div is somewhat
arbitrary. but choose the value such that
DSIZE div is distributed around the mins.
The value of div adjusts the average number
of moving subblocks in one frame., The average
number of moving subblocks will be mainly
concerned with the average number of itera-
tions in one frame. THH is necessary because
the subblock consisted of too many non-zero
value pixels rather than zero value pixels (i.e.,
too large size subblock) may generate a poor
result,

In the final step, the variational algorithm
is applied to each moving subblock in a sequen-
tial manner, We shall call the proposed algo-
rithm subblock based recursive algorithm
because the algorithm iterates on the basis
of small block. Since the subblocks which are
determined stationary by the threshold method

(1.1)

(2.0

4,4

Fig. 1. Description of the processing order in
subblock based recursive algorithm.
In this example the scene is decomposed
into 16 subblocks.
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may yield a poor estimation result because of
few data involved in the estimation process,
they must be skipped. In each subblock,
moving area decision is first performed and
the variational algorithm is applied to the only
moving area subblock.

The processing order this recursive algorithm
iterates is shown in Fig. 1. Recursion is pro-
ceeded In an increasing order of the number
shown in each subblock. After recursion is
started from the subblock #l, moving area
dicision is performed sequentially. Meanwhile
in the first subblock determined moving the
initial estimate is calculated using the correla-
tion technique explained in section 3. Then
with this initial estimate, the variational. algo-
rithm starts the iteration from that subblock
to the remaining ones following the proces-
sing order. The iteration is performed two
times in each subblock because only one
iteration may miss the continuity between
the subblocks and more than 2 iterations
are not necessary due to the presearched initial
estimate. If the subblock is determined station-
ary, the variational algorithm should not be
applied, and only preserve the estimation
result of the previous subblock since the cur-
rent moving subblock takes the estimation
result of ‘the previous moving subblock as a
new initial estimate for the variational algo-
rithm. After all the subblocks are processed,
final estimate is obtained. The fast algorithm
is summarized as follows and the flow chart is
in Fig. 2.

Step O : (Initialization) j=0, t=0

Step 1 :j «— j+l

Step 2 : If j-th subblock stationary, go to
step 7; otherwise t — t+1 and go to
step 3.

Step 3 : If t=1, the X(0,) - initial estimate

Step 4 : i=0

Step 5 : (Gradient search)
S(i+1j)=X(i,j)—sign(dE/AX(i+1,i)),
i—i+l

Step 6 : Ifi 2, go to step 5.
Otherwise go to step 7.

Step 7 : If j <N, X(0j+1) — X(2.j) and go
to step 1; otherwise go to step 8,

Step 8 : X(2,N) gives the estimation result.

81

Where X,E., and N denote the estimate vector,
the error in the j-th subblock, and the number
of decomposed blocks in the entire scene re-
spectively.

In this approach, significant computational
saving are obtained because this method iterates
on a small subblock rather than the entire
scene. The detailed comparison of the develop-
ed algorithm with the Legters and Young’s
[10] will be discussed in section 5.

Gradient
search

Fig. 2. Flow chart of the sub block based
recursive algorithm,

V. Simulation & Hardware Realization
Extensive computer simulation was used to

test the proposed algorithm in particular the
validity of fast algorithm (subblock based

‘" recursive algorithm) using image decomposi-

tion. Since segmentation problem was as-
sumed to have already been solved, binary
images were used to simulate the tracking

(81)
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algorithm which works with the difference
scenes. Fig. 3(a) contains the test image used
in simulation,
gion. If the number of subblock is increased
(or decreased) (for example, 32x32 or 8x8
size subblock), the tracking result becomes
poor because each subblock pixels involved
in the tracking process is too small (or large)
to produce a good estimate. 16x16 size sub-
block (i.e., the number of subblock in the
target region is 16) was found to be a good
compromise,

The proposed fast algorithm must include
a moving area detection algorithm, which
deeply affects the convergence of the algo-
rithm. The false dectection of moving sub-
block in the recursion process may do the
tracking great harm. The inclusion of too
small or too large size subblock in the re-
cursion may introduce a diverging direction
of gradient, hence result in an false estimation,
We select the parameter value of div in (19)
to 13 and mins to 10. The selection of para-
meter values is not critical because if 3-8
subblocks are detected to be moving, it is
sufficient to provide the convergence of the
algorithm.

The proposed algorithm works with the
consecutive difference scene. The difference
scene consists of a positive and negative part
as shown in Fig. 3(b).

Consecutive scene differences will not have
the same shape if the curvature of the traject-
ory changes. This is due to the unequal dis-
placement of the target in the x and y direc-
tion, or due to the unequal rotation along the
trajectory of motion. The tracking result
obtained from a positive difference scene was
observed to be almost equal to the result with
a negative scene. This result is expecied be-
cause of the compartibility between a vpositive
The same tracking result
was also observed when both the positive and
negative scenes were simultaneously used.
But in the rotational case, poor tracking result
was obtained when both the scenes were
used, hence either a positive or a negative
scene should be used. The tracking result of
fast algorithm in the translational motion is
shown in Fig. 4. The trajectory of motion
used for simulation is not a straight line but

and a negative scene.

We used 64x64 size target re-.

a curved line,
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Fig. 3. Test images.

The estimation result shown in the figure
reveals that translational motion containing
small rotation can be measured by a transla-
tional motion tracking only. The initial esti-
mate obtained from the directed search for
the maximum correlation was considered to
be adequate to the convergence of variational
algorithm. The arrow in the figure indicates
the converging direction from the initial esti-

e 1985% 1 H RFTEAGET N 22 % 18
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Fig. 5. Results of rotational tracking experiments.

mate toward the final estimate. Fig. 5 shows
the rotational motion tracking result. We use
only those rotation operators that rotate about
the center of gravity of the target because rota-
tion about an arbitrary point can be inter-
preted as a rotation about the center of gravity
followed by translation. Hence we only present
the tracking result of angular velocity in the
figure. Due to the assumption on the gradual
motion in section 2, the algorithm may intro-
duce a relatively large estimation error if the
motion of a target changes rapidly. Otherwise
the observed estimation error is relatively
small (within #*lpixel in translation and *1°
in rotation). The computer simulation con-
firmed that these resuits were identical to
those obtained using the entire scene, In the
tracking process, the searching strategy for
the convergence using gradient values is im-
portant. The searching strategy becomes
complex as the number of parameters to
estimate increases. The needed number of
parameters is 2 for the translational motion
tracking, and 3 for the rotational motion

tracking. Fig. 6. shows the flow chart
the tracking strategy.

for
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in the variational

strategy
algorithm & represents the displacement
vector,

The algorithm developed in this paper
can be easily implemented in hardware due to
the fact that binary images are used and the
gradient calculation can be implemented using
TTL logic and accumulator. But in the rotation-
al case, the implementation using TTI logic is
impractical because gradient expression for
angular velocity in (14) contains the non-binary
values. In that case, a high speed digital signal
processor such as NEC 7720 or TMS 320 can be
used for implementation. But such tragets as
airplane, ship, missile, etc. are completely track-
able without applying rotational motion track-
ing algorithm when they are in normal motion,
since translational motion tracking only can
estimate a motion with a small rotation. Fig. 7
shows the proposed hardware architecture for
the translational motion tracking system when
wither a positive or a negative scene is used.
Finally, the comparison of the proposed algo-

‘rithm with the non-decomposed one is tabu-

fated quantitatively in table 1. The iteration
number shown in the table is induced from the
extensive simulation. It is noted that since the




amount of the computation for moving detec-
tion is at best half compared with the others,
the weighting of 0.5 is included in the number
of the moving detection iteration, From the
table, the achieved ratio of total computational
savings is from
(64x64x5+64x3)/(16x16x16+16x16x16x0.5) =
4 up to
(64x64x8+64x64x8)/(16x16x5+16x16x6+16x%
16x16x0.5)=13.5, and on the average
(64x64x5+64x64x5)/(16x16x5+16x16x10+
16x16x16x0.5)="7.

read
sipmi

L (uv)

Fig. 7. Hardware architecture for realizing the
translational motion tracking.

Table 1. Comparison of the proposed algorithm
with the non-decomposed case. (the
number in the parentheses denotes the
average number of iterations.)

non-decomposed proposed
size | jteration| size | iteration
correlation
(initial 64x64| 5o0r8 |i6xl6 5o0r8
estimate)
moving X X |16x16] 16
detection
variational | ., o4l 3_8(5) | 16x16| 6—16(10)
algorithm

S e S — T A R T I AR R T —

VI. Conclusion

We have presented a mathematical approach
for a 2-D moving target tracking problem with-
out any assumptions on the tfajectory of mo-
tion and the shape of a target. Fast algorithm
was introduced using a gradient-type approach
with the operator formulation. Correlation
technique based on a 2-D directed search for
the maximum correlation was used to provide
an initial estimate for a variational algorithm.
Computer simulation using binary images to
represent the target texture confirms the
validity of the fast algorithm presented herein.
The algorithm appears to be a TTL-implement-
able with a CPU control and efficient approach
to the realistic real-time moving target tracking
problem., Changes currently taking place in
digital technology coupled with research in
real-time pattern recognition/image processing
algorithm are now making possible highly
sophisticated hardware for recognition and
tracking purposes. '
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