Studies on the Interaction of Edible Dyes with Protein I:

Binding parameters of edible dyes with bovine serum albumin

Seong Ki Jang, Bak-Kwang Kim and Wang-Kyu Lee College of Pharmacy, Seoul National University, Seoul 151, Korea (Received August 23, 1985)

Abstract [] The binding of bovine serum albumin (BSA)-edible dyes was studied by spectrophotometric method. The edible dyes used in this study were amaranth, erythrosine, tartrazine and sunset yellow.

The binding free energies and binding sites were determined at pH 7.4. The ranges of edible dye concentration were from 0.3 to 7×10^{-5} M, and those of BSA were from 0.15 to 3×10^{-6} M.

The binding free energies of BSA-edible dyes were from -6,300 to -8,100 cal/mole.

Keywords | Amaranth, Erythrosine, Tartrazine, Sunset yellow, Bovine serum albumin, Klotz method, Binding parameters.

Drug-protein binding has been the subject of extensive research as it relates to the action and fate of specific drugs in the body.

Goldstein¹⁾ and Meyer²⁾ published a review article about drug-protein binding. They emphasized a potential significance of binding phenomena in the region of toxicological and pharmacological action of drug.

The binding of drug to serum protein, in general, would appear to be undesirable, since drug activity is often suppressed³⁻⁶.

According to the review⁷⁻¹⁰¹, it suggests that hyperkinetic behaviors in children such as restlessness, impulsivity, hyperactivity, short attention span, excitability and oscillating mood can be caused by the ingestion of a large amount of food additives such as food colors and artificial flavors.

Since edible dyes are very widely used and misused in food and drug industry in many countries, it would be very important to investigate the binding of edible dyes to protein.

Various experimental procedures and analysis methods have been used to study drug-protein interaction. These include equilibrium dialysis¹¹⁾, ultrafiltration¹²⁾, gel filtration¹³⁾, NMR rates measurements¹⁴⁾, fluorescence techniques^{15–16)} and UV spectra technique^{17–29)}.

Although the binding free energy obtained by spectrophotometry is generally less than that obtained by dynamic equilibrium, specetrophotometry uses less sample, is operating simply edible dyes are not adsorbed in equilibrium membrane, spectrophotometry is, thus, one of the useful methods in the study of the binding of drugs to protein.

In this paper, we described the binding parameters of BSA-edible dye using this method for the purpose to study the effect of drug addition to BSA-edible dye binding.

EXPERIMENTAL METHODS

Materials

Amaranth, erythrosine, tartrazine and sunset yellow were used as commercial edible dye. Bovine serum albumin was obtained from Sigma Chemical Co. All solutions were prepared in 0.2M-phosphate buffer of pH 7.4.

Apparatus

Absorption spectra measurements were made with Ultraspec 4050 (LKB)-Apple II using 10-mm cell.

Methods

The experimental method was carried out by Klotz method²⁹⁾.

If molar absorptivity and the concentration of free dye or bound dye at a constant wavelength were ϵ_1 , C_1 or ϵ_2 and C_2 , respectively, the absorbance of the mixed solution is shown as following equation:

$$\log (I_0/I) = \varepsilon_1 C_1 d - \varepsilon_2 C_2 d$$
 where d is the thickness of the absorption cell in centimeters. (1)

By using
$$\varepsilon_{app}$$
, eq. (1) may be represented as $\log (I_0/I) = \varepsilon_{app} (C_1 - C_2) d$ (2)

The fraction of free dye, α , can be shown as follows:

$$\alpha = \frac{C_1}{C_1 + C_2} = \frac{\varepsilon_{app} - \varepsilon_2}{\varepsilon_1 - \varepsilon_2} \tag{3}$$

The ε_1 and ε_{app} were measured from the actual value of the dye solution and dye solution, to which protein was added. Also the values of ε_2 were obtained from the values

extrapolated to the intercepts of ε_1 versus [D]/[P] plot, where [D] and [P] are the concentrations of free dye and of total protein in the reaction mixture, respectively.

The number of moles of drug bound per mole of protein, r, the concentration of free dye, C, and the number of binding sites, n were related to the following equation:

$$\frac{1}{r} = \frac{1}{Kn} \cdot \frac{1}{C} + \frac{1}{n} \tag{4}$$

When $\frac{1}{r}$ is plotted against 1/C, a straight line is obtained with a slope being 1/Kn and the ordinate intercept 1/n.

Kn was calculated by using this equation, and free energy (ΔF) was calculated by the following equation:

$$\Delta F = -RT \ln Kn \tag{5}$$

where n is the number of binding sites on each protein molecules.

RESULTS AND DISCUSSION

In the case of erythrosine, ε_2 was obtained from Fig. 1. The value of ε_2 obtained from the ordinate intercept was about 42,000. Molar

Table I. Calculation of BSA-bound Erythrosine at pH 7.4

 ϵ_2 : 42,000

ε1: 80, 590

Total concn of dye ×10 ⁻⁶ M/1	concn of albumin ×10 ⁻⁶ M/1	ε _{app} at 525nm	α	Concn of free dye ×10 ⁻⁶ 10M/1	Conocn of bound dye ×10 ⁻⁶ 10M/1	Moles dye bound per mole protein	1/ <i>r</i>	$1/c \times 10^{-6}$
3. 0	1.5	54,000	0.311	9. 329	2. 067	1. 378	0.726	1, 071, 944
3. 0	2. 0	52,667	0.276	8. 292	2.171	1.085	0. 921	1, 205, 938
3.0	2.5	51, 333	0.242	7. 256	2.274	0. 910	1.099	1, 378, 214
3. 0	3.0	50,000	0.207	6. 219	2.378	0.793	1.262	1, 607, 917
5. 0	1.5	56,000	0.363	1.814	3. 186	2. 124	0.471	551, 286
5. 0	2. 0	54, 200	0.316	1.581	3.419	1.710	0.585	632, 623
5. 0	2.5	52,800	0.280	1. 399	3. 601	1. 440	0. 684	714, 630
5. 0	3.0	51,600	0. 249	1.244	3.756	1. 252	0.799	803. 958
7.0	1.5	57,714	0.407	2.851	4. 150	2, 766	0.362	350, 818
7. 0	2.0	55,000	0.337	2.358	4.642	2. 321	0. 431	424, 066
7.0	2.5	53, 143	0.289	2. 021	4, 979	1. 992	0. 502	494, 744
7.0	3. 0	52, 143	0.263	1.840	5. 160	1. 720	0. 581	543, 521

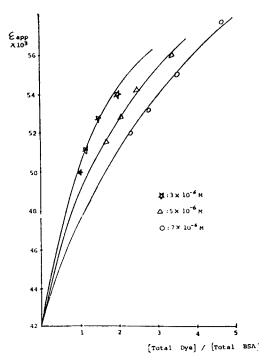


Fig. 1. Graphic determination of ε₂ for Erythrosine in the presence of bovine serum albumin at pH 7.4

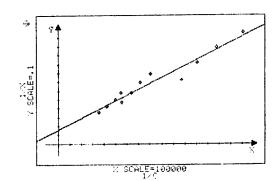


Fig. 2. Binding of Erythrosine by bovine serum albumin at pH 7.4

absorptivity of dye was about 80,590.

Data obtained from protein/dye ratio were expressed in Table I.

For the purpose of obtaining Kn, 1/r was plotted against 1/C in Fig. 2. The number of binding sites (n) was about 6.06, and binding free energy (ΔF) was about -8, 139 cal/mole.

In the case of amaranth, ε₂ obtained from the ordinate intercept of Fig. 3 was 15,000 and molar absorptivity of dye was about 22,810.

Table II. Calculation of BSA-bound Amaranth at pH 7.4

			ε_1 . ZZ , ε	310	ε2. 13,000			
Total concn Of dye ×10 ⁻⁵ M/1	Conen of albumin ×10 ⁻⁵ M/1	ε _{αρρ} at 520nm	α	Concn of free dye ×10 ⁻⁵ M/1 c	Concn of bound dye ×10 ⁻⁶ M/1	Moles dye bound per mole protein r	1/ r	$1/c \times 10^{-5}$
3. 0	1.5	19, 800	0. 615	1.844	1. 156	0.771	1.297	54, 236
3.0	2.0	18, 967	0.508	1.524	1.476	0.738	1.355	65, 630
3.0	2.5	18, 300	0.423	1.268	1.732	0. 693	1.443	78, 889
3.0	3. 0	17, 867	0.367	1.101	1.899	0. 633	1.580	90, 814
5. 0	1.5	20, 540	0.709	3.547	1. 453	0. 967	1.032	28, 195
5. 0	2.0	19, 960	0.635	3. 175	1.825	0. 912	1.096	31, 492
5.0	2.5	19. 300	0.551	2.753	2. 247	0.899	1.113	36, 326
5. 0	3.0	18, 800	0. 487	2. 433	2.567	0.856	1. 169	41, 105
7.0	1.5	21, 214	0.796	5. 570	1. 430	0.954	1.049	17, 954
7.0	2.0	20,657	0.724	5.070	1. 930	0.965	1. 037	19, 722
7.0	2.5	20, 143	0.658	4. 610	2. 391	0. 956	1.046	21, 694
7. 0	3. 0	19, 657	0.596	4. 174	2.826	0.942	1. 062	23, 957

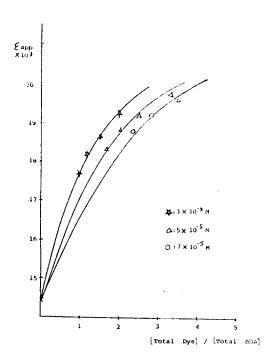


Fig. 3. Graphic determination of ϵ_2 for Amaranth in the presence of bovine sernm albumin at pH 7.4

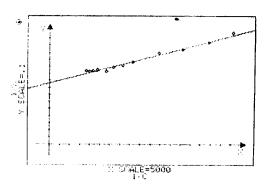
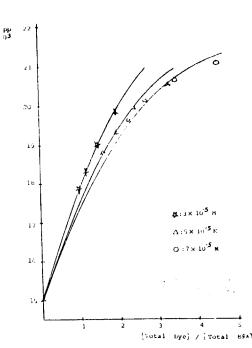


Fig. 4. Binding of Amaranth by bovine serum albumin at pH 7.4

By using these data, we calculated 1/r and 1/C values as shown in Table II and drew up Fig. 4.


The number of binding sites (n) and ΔF are about 1.16 and -6.757 cal/mole, respectively. When comparing the binding intensities of edible dyes to protein in the range of concentration studied, erythrosine was stronger than amaranth at a constant pH.

In the case of tartrazine, ε_2 obtained from

Table III. Calculation of BSA-bound Tartrazine at pH 7.4

 ε_1 : 21, 870 ε_2 : 14, 500

Total concn of dye ×10 ⁻⁵ M/1	Concn of albumin ×10 ⁻⁵ M/1	ε _{в pp} at 428nm	α	Concn of free dye ×10 ⁻⁵ M/1	Concn of bound dye ×10 ⁻⁵ M/1	Moles dye bound per mole protein r	1/r	$1/c \times 10^{-5}$
3. 0	1. 5	19, 267	0. 647	1. 940	1. 060	0.707	1. 415	51, 538
3.0	2.0	18, 63 3	0.561	1.683	1.318	0.659	1.518	59, 435
3.0	2.5	18, 200	0.502	1.506	1. 494	0.598	1.673	66, 396
3.0	3.0	17, 767	0.443	1.330	1.670	0.557	1.796	75, 204
5.0	1.5	19,700	0.706	3, 528	1.472	0. 982	1.019	28, 346
5.0	2.0	19, 200	0.638	3, 189	1.811	0. 906	1, 104	31, 362
5. 0	2.5	18, 860	0.592	2. 958	2.042	0.817	1. 224	33, 807
5. 0	3.0	18, 380	0.527	2.632	2. 368	0.789	1. 267	37, 990
7.0	1.5	20, 029	0.750	5. 251	1.749	1. 166	0.858	19, 044
7.0	2.0	19, 614	0.694	4.858	2. 143	1.071	0.934	20, 587
7.0	2.5	19, 243	0.644	4.505	2. 495	0. 998	1.002	22, 199
7. 0	3.0	18, 800	0. 583	4. 084	2. 916	0. 972	1.029	24, 485

5. Graphic determination of ε₂ for Tartrazine in the presence of bovine serum albumin at pH 7.4

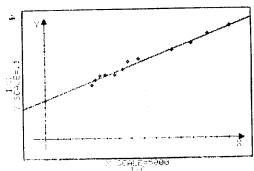


Fig. 6. Binding of Tartrazine by bovine serum albumin at pH 7.4

Fig. 5 was about 14,500 and molar absorptivity of dye was about 21,870.

We calculated 1/r and 1/c as in Table III and drew up Fig. 6 by using the same method.

The number of binding sites (n) was 1.61, and ΔF calculated by using Kn was about -6,333 cal/mole. When comparing the results obtained from the experiment, the binding intensity was increased in the order of tartrazine, amaranth and erythrosine.

Table IV. Calculation of BSA-bound sunset yellow at pH 7.4

ε₁: 20, 300 ε₂: 13, 000

			ε ₁ : 20, 300		ε2. 13,000			
otal concn of dye 10 ⁻⁶ M/1	Concn of albumin ×10 ⁻⁶ M/1	ε _{ερρ} at 480nm	α	Concn of free dye ×10 ⁻⁵ M/1	Concn of bound dye ×10 ⁻⁵ M/1	Moles dye bound per mole protein r	1/ r	$1/c \times 10^{-5}$
		17,533	0. 621	1. 863	1. 137	0.758	1.319	53, 676
3.0	1.5	•	0.594	1. 603	1.397	0. 699	1.431	62, 393
3. 0	2.0	16, 900	0. 466	1. 397	1.603	0.641	1.560	71,569
3.0	2. 5	16, 400		1. 247	1.753	0.585	1.711	80, 220
3. 0	3.0	16, 033	0.416	1. 247	100			a. = 00
5. 0	1.5	17,600	0.630	3. 151	1.849	1. 233	0.811	31, 739
5. 0	2. 0	16, 880	0.532	2.658	2.343	1. 171	0.854	37, 629
	2.5	16, 520	0.482	2, 411	2,589	1.036	0.966	41, 477
5. 0	3.0	16, 140	0. 430	2. 151	2.849	0. 950	1.053	46, 497
5. 0				4. 849	2, 151	1.434	0.697	20, 621
7.0	1.5	18, 057	0. 693		2, 181	1. 343	0.745	23, 175
7.0	2.0	17, 500	0. 614	4. 315			0.815	25, 436
7.0	2.5	17, 100	0.562	3, 932	3. 069	1, 227		28, 295
7.0	3.0	16, 686	0. 505	3. 534	3. 466	1. 155	0.866	20, 250

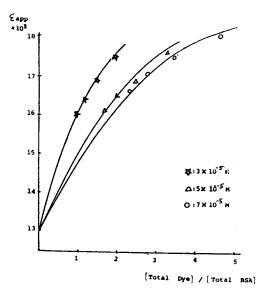


Fig. 7. Graphic determination of ε₂ for Sunset yellow in the presence of bovine serum albumin at pH 7.4

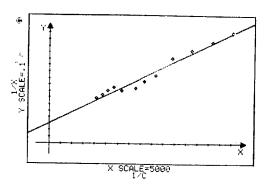


Fig. 8. Binding of Sunset yellow by bovine Serum albumin at pH 7.4

In the case of sunset yellow, ε_2 obtained from Fig. 7 was 13,000, and molar absorptivity of dye (ε_2) was about 20,300.

Data calculated by using these values and ε_{app} obtained from a vaious ratio of protein/dye are arranged in Table IV. 1/C in x-axis is plotted against 1/r in Y-axis as in Fig. 8.

The number of binding sites (n) was about 3.17 and the value of ΔF was about -6,276 cal/mole. This value is resemble to that of

tartrazine.

SUMMARY

The binding free energy of edible dye bou to protein were measured and calculated means of spectrophotometry. Amaranth, eryt rosine, tartrazine and sunset yellow as edib dyes and bovine serum albumin as protein we used in this study.

The concentration ranges of edible dyes we $3\sim7\times10^{-6}\mathrm{M}$ in the case of erythrosine at $3\sim7\times10^{-5}\mathrm{M}$ in the case of amaranth, tartrazi and sunset yellow. The binding free energy edible dye bound to BSA is ranged $-6,300-8,100\mathrm{cal/mole}$.

The edible dyes arranged in the decreasing order of binding intensities followed the order in which the maximum wavelength of edible dye decreased:

Erythrosine>Amaranth>Tartrazine≓Sunser Yellow

But quantitative relationship between the maximum wavelength and binding intensing was not obvious at this stage.

LITERATURE CITED

- 1) Goldstein, A.: Pharmacol. Review., 1, 1 (1949).
- Meyer, M.C. Guttman, D.E.: J. Pharm. Sci., 895 (1968).
- 3) Aggler, P.M.: N. Engl. J. Med., 276, 496 (1967)
- Sellers, E.M. Koch-Wester, J.: Clin. Pharmace Therap., 11, 544 (1970).
- Boston Drug Surveillance Program, N. Engl. Med., 286, 53 (1972).
- B.B. Brodie, "Transport Function of plasn proteins" Edited by Desgrez, Elsevier publishir Co., New York, 397-145 (1966).

- Palmer, S., Papoport, J.L. Quinn, P.O. Clinical Pediatrics, 14, 956 (1975).
- 8) Feingold, B.: Hosp. Prac., 8, 11 (1973).
- 9) Gale, A.E.: Med. J. Aust., Oct. 546-547 (1976).
- Feingold, B. "Why your child is hyperactive," Random House, New York, N.Y. (1975).
- 11) Joseph Judis, J. Pharm. Sci., 61, 89 (1972).
- 12) Terp, P.: Acta Pharmacol. Toxicol., 6, 386 (1950).
- 13) Porath, J. Flodin, P.: Nature, 183, 1657 (1959).
- 14) Zia, H., Cox, R.H., and Luzzi, L.A.: J. Pharm. Sci., 60, 45 (1971).
- 15) Jun, H.W. and Luzzi, L.A.: *ibid*, **60**, 1430 (1971).
- 16) Jun, H.W. and Luzzi, L.A.: *ibid.*, 60,, 1821 (1971).
- Weder, H.J., and Bickel, M.H.: J. Pharm. Sci.,
 59, 1563 (1970).

- 18) Moriguchi, I. and Wada, S.: Chem. Pharm. Bull., 16, 592 (1968).
- 19) Moriguchi, I.: ibid, 16, 597 (1968).
- 20) Moriguchi, I.: ibid, 16, 601 (1968).
- 21) Moriguchi, I.: ibid, 16, 734 (1968).
- Nazareth, R.I., Sokoloski, T.D.: J. Pharm. Sci.,
 63, 199 (1974).
- 23) Ma, J.K.H. and Jun, H.W. *ibid.*, **62**, 2038 (1973).
- 24) Ma, J.K.H. and Jun, H.W.: *ibid*, 62, 1261 (1973).
- Aizawa, H., Eiyo To Shokuryo, 23(5), 320-4 (1970).
- 26) Aizawa, H., ibid, 22(4), 235-9 (1969).
- 27) Aizawa, H., ibid, 22(4), 240-4 (1969).
- 28) Aizawa, H., Sokuhin Eiseigaku Zasshi, 8(1), 40-5 (1967).
- 29) Klotz, I.M.: Am. Chem. Soc., 68, 2299 (1946).