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Abstract (] The interaction of reduced riboflavin-

2,3, 4, 5" -tetrabutyrate with salicylic acid, aspirin,

and salicylamide has been spectroscopically investig-
ated to determine the binding mechanism. Hydrogen-1
and carbon-13 nuclear magnetic resonance, infrared,
and absorption spectra were measured in chloroform-~d
and chloroform. The association of the reduced
riboflavin with salicylic acid derivatives is different
from that oxidized one. Salicylic acid and the reduced
riboflavin form a cyclic hydrogen bonded complex
through the imino (3-N, 5-N) protons and the
carbonyl (2-C,
ring of the latter, and the carboxylic hydroxyl proton

4-C) oxygens of the isoalloxazine

and carbonyl oxygen of the former. Aspirin and the
reduced riboflavin form a complex by the same mode
as salicylic acid. Salicylamide forms a cyclic hydrogen
bonded complex with the reduced riboflavin through
the imino (3-N,
(2-C, 4-C) oxygens of the isoalloxazine ring, and

5-N) protons and the carbonyl

the amino proton and the carbonyl oxygen of salic-
aylmide. It appears that both the oxidized and reduced
form of riboflavin are associated with salicylic acid
derivatives.

Keywords [ Reduced riboflavin, Salicylic acid deri-
vatives, Hydrogen bonding, Nuclear magnetic reson-

ance, Infrared and Absorption spectra.

The mechanisin of the electron transfer from
nicotinamide adenine dinucleotide to flavoprotein,
or the charge-transfer complex formed by them,
was studied by a number of authors to give a
good account of the function of the respiratory
chain!~®. Especially, Honda has described that
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reduced NAD-coupling enzyme complex converts
spontaneously to the hypothetical intermediate
as oxidized NAD-coupling enzyme, which is
considered indispensable to the ATP formation
in the respiratory chain®. Simultaneously, the
electrons in (NAD,,)-? can be transfered to
flavoprotein. It has been determined experime-
ntally that higher concentrations of salicylates
result in marked stimulation of respiration. It is
well accepted that salicylates stimulate respiration
by uncoupling oxidative phosphorylation and
increasing metabolism?1%,

Millhorn et al., on the other hand, have
that

reapiration by mechanism other than one related

reported recently salicylates stimulate
to their ability to uncouple oxidative phosph-
orylation and increase metabolism!4,!5'. However,
it is generally agreed that salicylates cause the
breakdown of some high-energy intermediatc
involved in the phosphorylation process, but the
most reliable mechanism has not been found
yet. It is also known that the hydrogen bonding
of salicylates in biological system is relevant to
their drug action's’.

In the previous papers, specific formation of
hiydrogen bonding between the oxidized ribo-
flavin and salicylic acid derivatives has been
reported'’s!®,  The iscalloxazine ring of ribo-
flavin takes hydrogenated and dehydrogenated
forms and hence it can be an electron carrier

in respiratory chain. Therefore, it seems worth-
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while to examine the effect of hydrogenation
on the association of a riboflavin derivative with
salicylic acid derivatives.

In this paper, molecular interaction between
a fully reduced riboflavin tetrabutyrate and
salicylic acid derivatives in chloroform-d and
chloroform was examined by the spectroscopic
methods (through a detailed analysis of the IR,
NMR, and absorption spectra of the complex).
The results of this study may provide a basis
for understanding the redox reactions of flavo-
enzyme and interpreting the mode of action of

salicylate.
EXPERIMENTAL METHODS

Materials

Riboflavin-2’, 3°, 4’, 5’ —tetrabutyrate(RFTB)
was obtained from Dae Woong Pharm. Co.,
Ltd., Korea. It was recrystallized from chloro-
form and its purity was checked by TLC.
Salicylic acid (SA) and salcylamide (SM) were
obtained from Pacific Pharm. Co., Ltd., Korea
and were used after recrystallization from
chloroform. Aspirin (AS) was purchased from
E. Merk, Darmstat, Germany, which was used
without further purification. chloroform-d was
purchased from E. Merk. Chloroform was treated
with one-half its volume of water several times,
dried with caleium chloride and distilled frac-
tionally from phosphorous pentoxide through a
120cm column packed with glass helices. The
distillate was refluxed and redistilled fraction-
ally.
Methods

The absorption spectra were measured in a
Unicam SP 1750 Ultraviolet Spectrophotometer
connected to a Unicam AR 25 Linear Record,
using a 10 mm quartz cells. Infrared spectra

were recorded on a Beckman IR 20 A Infrared

spectrophotometer. Fused quartz cells (5mm
were used in the 3y region. Hydrogen-1 an
carbon-13 NMR spectra were recorded on
Varian 80 MHz FT-NMR Spectrometer equippe
with a temperature-control unit. Chemical shift
were read relative to the resonance of intern:
tetramethylsilane in both cases.

To prepare the reduced RFTB (RH) sampls
a CDCl, solution of RFTB (R) in a samp.
tube (or cell) was treated with an aquous sol
tion of sodium dithionite in an amount of suf
cient to reduce the riboflavin. After shakin;
the tube (or cell) was sealed anaerobicall;
Since even a slight amount of paramagnet
flavin radicals causes brodening of the signal
the water layer was held over the CDCly sol
tion to keep the flavin in its fully reduc
state!®?9. The reduced riboflavin could
reversibly oxidized by bubbling oxygen in
the solution.

RESULTS

Absorption spectra

The absorption spectrum of RFTB treated !
the above-mentioned reduction was compar
with that of the oxidized RFTB in CHCI
Disappearance of absorptions at 450 and 350 ¢
and appearance of a strong band at 300r
were observed. This may be a evidence tk
the reduction of riboflavin was completed®~?

As shown in Fig. 1, a marked spectral chan
was produced upon adding SA to RH
CHCl,, The red and hyperchromism w
observed. It may be assumed that these spect
changes are due to solely to the formation
association between RH and SA. Frequer
shifts due to association such as hydrogen bo
were determined from the spectra of the

and hydrogen bonding species. These phenom
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g. 1: Effects of SA on the absorptron spectrum of
5x107°M RH in CHCls. SA is added from 0
to 5x10°% Key (——) free molecule, (------ )
spectra in the present of SA in order to in-
creasing concentration of SA, (---) spectra
in the presence of 5x10-2M SA.
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t. 2: Infrared spectra of (3%) oxidized RFTB(R)

and RH, and 1:1 mixture of (a) RH and
SA, (b) RH and SM. These spectra show
the observed (——) and the calculated sum
of the lower two spectra (.- ). The con-
centrations are 4 mM in CHCl; for the mea-
surments in 3 x region.

were also observed with AS or SM in CHCl,.

Infrared spectra

The IR spectrum of 4 mM RH showed very
broad strong band around 3400 cm™' contradic-
ting with the sharp 3-NH stretching band at
3380 em™! of the oxidized one in 3 u region
(Fig. 2). According to Yu, the broad band
comes from the hydrogenated NH groups at the
1-N and 5-N positions of the reduced isoallo-
xazine ring and indicates the strong self-asso-
ciation of RH2V, In the spectrum of 4mM SA
in CHCl;, a medium band due to the nonbonded
carboxylic hydroxyl stretching vibration was
observed at 3510 cm™! and a quitely broad band
due to the bonded carboxylic hydroxyl vibration
was also observed below 3350 cm~!,

When eqimolar solution of RH and SA were
mixed together, the nonbonded bands of the
imino groups of RH and the carboxylic hydroxyl
group of SA decreased drastically in intensity
(Fig. 2). These spectral changes are apparently
caused by hydrogen bonding. From these facts,
it may be suggested that the hydrogen atoms of
imino groups of RH and the carboxlic hydroxyl
group of SA be used in the association. Similar
phenomena were observed with RH upon the
addition of AS.

The spectrum of 4mM SM in 3p region
showed two sharp bands with medium intensity
at 3415 and 3535cm~!, which are respectively
due to symmetric and antisymmetric stretching
vibration of the nonbonded amino group. The
IR spectra of the 1:1 mixture of RH and SM
also showed us binding of RH with SM (Fig.
2). The nonbonded bands of amino group of
SM became weak. Therefore, it may be con-
sidered that amino group of SM participates in
hydrogen bonding.

Hydrogen-1 NMR spectra
'H-NMR spectrum of the reduced state of
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flavin in comparison with the oxidized one has
been reported!®,2”. In the spectrum of RH in
CDCl;, most of proton nuclei of RH resonated
in higher fields than those of R. This may be
due to the increase of the total electron densities
by reduction as discussed previously?®. Never-
theless, the 3-N proton signal of RH was
observed at a lower field than than of R, which
may be due to the stronger self-association of
RH. And 5-N proton signal was positioned at
about 4.8 ppm, but 1-N proton was not evident
at the present condition (not shown).

In the spectrum of SA solution in CDCls, the
chemical shift of the carboxylic hydroxy! proton
was observed below 10 ppm, the phenol proton
did not appear at low concentrations but was
weakly observed at high concentrations below
9 ppm and the benzene ring protons were obser-
ved in 6.9-—8. 1 ppm. The carboxyl proton of AS
was also observed weakly at high concentration
(below 9 ppm). In the spectrum of SM, absorp-
tion of amino proton was observed at about
6 ppm and that of hydroxyl proton below 12
ppm.

The imino protons of RH moved slightly
downfield by the increase of the concentration
(not shown). It may be considered that this evi
dence indicates the strong self-association of RH
through imino protons. If some proton takes part
in hydrogen bonding, it becomes less shielded
and its resonance shifts downfield. Therefore,
the exact positions of the hydroxyl, amino and
imino resonances depend on the degree of asso-
ciation and hydrogen bond formation: they
vary with concentration and temperature.

To confirm the formation of hydrogen bonds
between RH and salicylic acid derivatives in
CDCl,, the shifts of the imino proton resonances
of RH were measured on addition of salicylic
acid derivatives. The chemical shifts of 3-N

and 5-N protons of RH were plotted against
concentration of SA at 37°C, keeping the ¢
centration of RH constant at 0. 08 M (Fig.3-
The imino signals shifted slightly downh
particularly 3-N proton signal appeared to |
aden, as the concentration of SA increased:
slopes of 3-N and 5-N curves were found
be slightly greater than those of the chem
shifts due to the self-association of RH. U
the addition of AS to RH, the chemical st
of the imino protons of RH were similar
those of SA (Fig. 3-b).
can be inferred that the association betw
RH and SA or AS is stronger than the

association of each compound and imino (2

From the result:

5-N) protons of RH also participate in
hydrogen bonding. The carboxylic hydr.
proton signals of SA and AS disappeare
addition of SA or AS to RH. This may be
to the rapid chemical exchange between
carboxylic hydroxyl proton of SA or AS
hydroxyl proton of water molecule. The pk
proton signal of SA decreased in intensity
then disappeared with shielding effect as
concentration of RH was increased.

In the case of SM, the imino protons of
moved downfield as the concentration of
increased and the slope of 3-N curve
observed to be a little greater than th
5-N curve (Fig. 3-¢). Fig. 3-d shows
chemical shift of the amino proton of
plotted against the concentration of RH, -
keeping the concentration of SM consta
0.08 M. As the concentration of RH incre
the amino proton signal of SM shifted d
field and appeared to sharpen but the phe
hydroxyl proton signal did not move and
was located at about 12 ppm constantly.

From above results, it may be suggested

RH and SM form a hydrogen bonded con
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Fig. 3-a: Effects of the concentration of SA on the chemical shifts of RH 3-N(e) and 5-N(o)
protons in CDCls, keeping the concentration RH constant at 0.08 M.
3-b: Effects of the concentration of AS on the chemical shifts of RH 3-N(e) and 5-N(o)
protons in CDCls, keeping the concentration of RH constant at 0.08 M.
3-¢: Effects of the concentration of SM on the chemical shifts of RH 3-N(e) and 5-N(o)
protons in CDCl;, keeping the concentration of RH constant at 0.08 M.
3-d: Effects of the concentration of RH on the chemical shifts of SM amino proton in CDCls,
keeping the concentration of SM contant at 0.08 M.
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through the imino (3-N, 5-N) protons of RH
and the amino proton of SM.
Carbon-13 NMR spectra

BC-NMR spectra of the fully reduced form
of flavin has been reported with riboflavin
decoupled  13C-
resonance spectra of the oxidized and reduced

tetrabutyrate's,2?,  Proton
riboflavin *C at natural abundance level were
observed (not shown). As the results of 'H-NMR
spectra, most of carbon nuclei of RH gave
signals at higher field than those of the R,
which is well explained by the increase in total
electron densities.

To obtain information about characteristics
of carbon atoms following the complex formation
in CDCl;, the shifts of all carbon resonances
of RH were measured on addition of SA (Table
I). The resonance signals of 2- and 4-carbonyl
carbons of RH moved to upfield and those of
other carbons of the isoalloxazine ring moved

Table. 1. 3C Chemical-Shift Values of the Isoall-
oxazine Ring-Carbons of Reduced RFTB

(RH) upon Addition of Salieylic Acid*

chemical shift (ppm)

carbon
RH RH+SA
C(4a) 112.7 103.9
6-CH 117.4 115.8
9-CH 119.0 117.0
C(9a) 127.6 127.6
C(8) 129.5 128.5
c 130.8 133.2
C(5a) 135.7 135.1
C(10a) 139.7 139.2
2-CO 147.8 150. 0
4-CO 150. 4 156. 4

* Measured from proton-decoupled 3C NMR spetra
with 3C at natural abundance.
Reduced PETBRH): 98.6mg/0. 5mICDCl; (0. 3M)
Salicylic acid(8A): 41.6mg/0. 5mICDCl; (0. 15M)
** Measured from internal standard, TMS.

slightly.

It is known that variations in local-electron
densities primarily govern 13C shielding in
aromatic rings?*, If some carbonyl oxygen par-
ticipates in hydrogen bonding, the carbonyl
carbon becomes the more shielded and its re-
sonance shifts upfield. This phenomenon can
be similar to the solvent effect?5,20,

From above results, therefore, it may be
assumed that 2- and 4-carbonyl oxygens of RH
are used in hydrogen bonding. And probably,
the pertubations of other carbon signals may
be also due to the formation of hydrogen bon-
ding that changes the local-electron densities
of each carbon. Similar phenomena were also
observed upon addition of AS or SM to RH
(not shown).

DISCUSSION

The selective formation of hydrogen bonding
between the oxidized form of riboflavin and
salicylic acid derivatives has been elucidated
through our previous investigations!7,13,

Infrared and nuclear magnetic resonance
techniques provide a direct observation of the
hydrogen bonded association in solution. As
shown in the 'H-NMR spectra, the 3- and 5-N
imino protons of RH and the amino proton of
SM seem to participate in the hydrogen bonding.
However, participation of the 1-N imino pro-
ton of RH in the bonding is not clear because
of no experimental evidence in the present con-
dition. The 'H-NMR method utilized here
measures the chemical shifts of the donor
proton in the hydrogen bond formation. In the
observation of !3C-NMR spectra, which can
give a direct information on the identity of the
acceptor atom. Hence it can be inferred that not
only 2-C but also 4-C carbonyl group of RH
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takes part in the hydrogen bonding. This sug-
gestion can be illustrated by the fact the charge
density of the 2-C carbonyl oxygen atom is
similar to that of the 4-C one in RH, while
the charge density of the 2-C carbonyl oxygen
atom is greater than that of the 4-C one in
R&.2D,

Participation of the carboxyl groups of SA
and AS in the association is also assumed by
the results of IR spectral observation. And the
changes of absorption spectra support the
hydrogen btond formation at the afore-mentioned
binding sites.

Based on these above roints, thus, the most
probable hydrogen binding modes are represented
in the following manner. A likely association
between RH and SA is a hydrogen bonded
complex through the imino (3-N, 5-N) protons
and the carbonyl (2-C, 4-C) oxygens of RH,
and the carboxylic hydroxyl proton and the
cabonyl oxygen of SA (Scheme 1). Inthe case
of AS, the similar mode of the association with
SA can be considered (Scheme 2). SM forms
a hydrogen bonded complex with RH through
the imino (3-N, 5-N) protoﬁs and the carbonyl
(2-C, 4-C) oxygens of the iscalloxazine ring of
RH, and the amino proton and carbonyl oxygen
of SM (Scheme 3).

Because the association constants of RH with
salicylic acid dervatives in the present condition
can not be obtained unfortunately, the intensity
of the hydrogen bonding between salicylic acid
derivatives is not able to compared. However,
it seems to ke distinct that both the oxidized
and reduced form of riboflavin asscciate with
salicylic acid derivatives.

The formation of various types of hydrogen
bonding affects the frontier orbital density of
5-N of the iscalloxazine ring?®. It is still not
clear that the hydrogen bonding of RH affects

/
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the electron densities of 4a-C and 5-N. Con-
sidering that salicylates interact with the oxi-
dized and reduced riboflavin, the electron affinity
of the isoalloxazine ring may be increased,
which accelerates the electron flow from the
substrate to the coenzyme.?"~31

The NMR studies have been restricted to the
oxidized form of free and protein-bound flavin,
except for several studies of N-alkylated flavins,
because the line-broadening was caused by small

amounts of semiquinone radicals provoked by



106 B.S. YU, C.O. OH and D.H. SOHN

the trace of oxygen and the strong self-asso-
ciation of the reduced flavin!%.2®, Then, it is
well known that riboflavin tetrabutyrate is a
useful compound to circumvent these difficul-
ties!?,

The use of nonpolar solvents, such as CDCI,
and CHCl,, is resonable, because this environ-
ment may mimic in someway the inside of the
enzyme-substrate complex. This expression is
related to the suggestion that FAD in flavoen-
zyme is surrounded by the hydrophobic environ-

ment3?-34),
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