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FACTORIZATION OF POLYNOMIALS OVER A 
DIVISION RING

Tae Hoon Hyun and Jae Keol Park

Factorization of polynomials over a division ring will 
"be considered in this short note. In fact, L. H. Rowen[33 
refined Wedderburn's method [4] of splitting polynomials. 
Here we improve again Rowen's result on factorization 
of polynomials.

We start with following well known

Lemma 1，Let D be a division rings with the center R 
Then for every two-sided ideal I of Z兀妇 there is a 
monic polynomial /(x) in F[_x] such that 
Moreover, Z is a prime ideal if and only if f(x) is irr­
educible in尸[成丄

Proof. Since Dfjrj is a principal (left and right) ideal 
domain, there is a monic polynomial /(x) such that I = 
/(x) D[_x] of least degree. Now for d in D, r(x)=”(多) 

is in I and the degree of r(x) is less than 
that of /(x). Hence r(x)~0 and so f{x) is in 
Straightfowardly, it can be verified that 
is prime if and only if /(x) is irreducible in E匚叮.

Lemma 2< [2, Theorem 3,p. 179] Let D be a division 
ring with, the center F and let K be a finite algebraic 
extension field of F. Then there are a division ring A 
and two positive integers h9 m such that

(a) D &K=Ma板(A).
(b) KuMatm(D) as an F-algebra and m is such the
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smallest positive integer.
(c) hm—dimFK.
Furthermore, A is the centralizer of K in Matm(D).
Following [口 a right ' ideal is bounded if it

contains a non-zero two-sided ideal. The sum of all non 
-zero two-sided ideals contained in g(%)/兀妇 is thus a 
two-sided ideal and is called the bound of g(*)Z)[幻.We 
say two polynomials 幻(％) and 幼(*) in are right 
similar if I兀:口/gi(#)I기and 1兀%]/刼"以兀妇 are 1兀*] 

-isomorphic. In. this case 兀妇 and g2(%)Z兀妇 have 
the same bound if one of them is bounded. Moreover, 
gi(%) and g2(x) are also left similar. So we just say gi(x) 
and g2(*) are similar when they are right similar.

Theorem 3. Let Z) be a division ring wit효 the center 
F and let p(、*、) be an irreducible monic polynomial in

If p(u) =0 for some algebraic element u over F, 
then for any irreducible decomposition. 2(%) =gi(*)gz 
(x')-gn(x') of 心、)in Z兀幻 we have

(a) Every g,(x) is similar to gi(x),
(b) deg 母(龙)(hence all deg g,(%)) is the smallest po­

sitive integer w such that J미0](二Mat. (Z)) as an 
F-algebra,

(c) I兀%]/2(*)D[幻 is 1兀幻-isomorphic to

and
(d) p(、妥)is the minimal polynomial of u.

Proof. We note that I兀曰兀妇is sim­
ple Artinian. By Lemma 2, there are a division ring A 
and two positive integers h, m such that deg p(x)=hmf 
1兀x]/Z(*)DDQ=Mat」A), and m is the smallest posit­
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ive integer so that F[幻/(?(%)) is F-embedded in Matm(D). 
Actually there is a minimal right ideal V of the simple 
Artinian ring 1兀幻/0(»)丿兀幻 with dimDV=^m and 
(2(%)) is F-embedded in EndD(V).

Let with />(x)~a(x)^(%)in D[幻.

Then since K is a minimal right ideal, 0(%)Z兀%] is a 
minimal right ideal of [兀幻 and so §(x、) is irreducible in 
D[_x]. Now for an irreducible decomposition Z(%)=#(盼 

肖3)…们(%) in it can be verified that £(%)〃[%] and
们(、对 have Z(*)Z兀幻 as the bound, (see [2],p.39) So R(化) 

and each 乱(%) are similar. In particular, de양 0(%)=deg 
S心;)for z=2,.., k. Moreover, since deg 0(%)=所 and 
deg we have h=d

Now consider the given irreducible decomposition. p(x、) = 
母(x)gn(x) in the assumption. Then obviously n^k and 
each. gi{x}D[_x} has the bound So each gt(x)is
similar to ^6(%). Of course deg g;(为)二二％ is the smallest 
positive integer such that F[妇/(0(多))is 尸一embedded in 
Matm(D). So we prove (a) and (b)・

For (c), recall that the bound of each g；(为)Z兀妇 is 
0(光)Z兀%丄 Since 力(％) is irreducible in FQx], 1兀幻/力(#) 

刀[幻 is I兀幻-isomorphic to 任曰/g,(%)Z兀妇 by 口， 

Theorem 20, p.45].
Finally for (d), let I be the ideal of polynomial f(x) 

in I兀％] such that jf(我)=0. Then j>(x) is in. I and so I is 
a non-zero two-sided ideal of I兀％丄 Hence by Lemina 1 
there exists a monic polynomial fQ(x) in F^x] such that 

兀％丄 But since p(x) is irreducible in FM, we 
have y>(x)=/0(x) and so Z=^(x)D[xJ. Hence p(x) is the 
minimal polynomial of u and the proof is completed.
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Observing Theorem 3 that every irreducible factor g(%) 
of p(x) has the same degree m which is the least posi­
tive integer such that FCu]CMatm(D) as F- algebras, we 
get following immediately.

Corollary 4. [3, Theorem L5] Let £> be a division ring 
with the center F and let p{x) be an irreducible polyno- 
mial in F^xJ. If Z(d)=0 for some element d in Df then 
D3) splits into linear factors in D[_x} and p(x) is the 
minimal polynomial of d.

Proof. In this case since we have % = L Hence
each gt(x) is linear in any irreducible decompostion of，)(%).

Cqr(XLARY & Let D be a division ring F
and let p(x) be an irreducible monic polynomial in 
If deg p(x) is prime, then either Z(») is irreducible in 

or p(x) splits into linear factors in
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