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FACTORIZATION OF POLYNOMIALS OVER A
DIVISION RING

Tae Hoon Hyux anp Jae KroL Park

Factorization of polynomials over a division ring will
be considered in this short note. In fact, L.H. Rowen{3]
refined Wedderburn’s method [4] of splitting polynomials,

Here we improve again Rowen’s result on factorization
of polynomials.

We start with following well known

LemMa 1. Let D be a division rings with the center [F.
Then for every two-sided ideal 7 of D{x] there is a
monic polynomial f(x) in F[x] such that I=f(x)D[«].

Moreover, I is a prime ideal if and only if f(x) is irr-
educible in F[x].

Proor. Since D[«x] is a principal (left and right) ideal
domain, there is a monic polynomial f(x) such that I =
flx)DIx] of least degree. Now for d in D,r{x) =df(x)
—f(x)d is in I and the degree of r{x) is less than
that of f(x). Hence 7{x)=0 and so f(x) is in F[x].
Straightfowardly, it can be verified that I=jf(x)D[«]
is prime if and only if f(x) is irreducible in F[x].

LemMa 2. [2, Theorem 3,p.1791 Let D be a division
ring with the center F and let K he a finite algebraic
extension field of F. Then there are a division ring A
and two positive integers #, m such that

(a) D @K=Mat, (A).

(b) KCMat, (D) as an F-algebra and m is such the
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smallest positive integer.

(¢) hm=dim XK.

Furthermore, A is the centralizer of K in Mat.(D).

Following [1] a right "ideal g(x)D[x] is bounded if it
contains a non-zero two-sided ideal. The sum of all non
-zero two-sided ideals contained in g(x)Df{x] is thus a
two-sided ideal and is called tke bound of g(x)D{x]. We
say two polynomials g(x) and gu(x) in D[x] are right
similar if D[x1/g1(x)D[x] and D{x)/g.(x)D[x]} are D[x]
~isomorphic. In this case g (¥)D[«] and g(x)D{«x] have
the same bound if one of them is bounded. Moreover,
g1(x) and gy(x) are also left similar. So we just say g{x)
and g.(x) are similar when they are right stmilar.

Turorem 3. Let D be a division ring with the center
F and let () be an irreducible monic polynomial in
F{x]. If p(x) =0 for some algebraic element « over F,
then for any irreducible decomposition p(x) =g (x)g
(x)+-g.(x) of p(x) in D[x] we have

(a) Every g.(x) is similar to gi(%),

(b) deg gi(x) (hence all deg g,(x)) is the smallest po-
sitive integer m such that F{#]CMat.(D) as an
F-algebra,

(c) D[x)/p(x)D[x] is D[x]-isomorphic to
@Y. Dlx]/g.(x)Dix]
and

(d) p(x) is the minimal polynomial of .

Proos. We note that D{a3/p(x)D(x]=D® F{u] is sim~
ple Artinian. By Lemma 2, there are a division ring A
and two positive integers %, m such that deg p(x)=rhm,
Dx1/p(x)D[x]=Mat,(A), and 2 is the smallest posit-
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ive integer so that F[x]/(p(x)) is F~embedded in Mat, (D).
Actually there is a minimal right ideal V of the simple
Artinian ring D[x]/p(x)D{x] with dim,V=m and F[x}/
(p(x)) is F-embedded in End,(V).

Let V=DIX}/B(x)D[x] with p(x)=ea(x)8(x)in D{x].
Then since V is a minimal right ideal, 8(x)D[x] is a
minimal right ideal of D[x] and so B(x) is irreducible in
Dix7]. Now for an irreducible decomposition pH(x)=8(x)
Ba(x)-B8,(x) in D[ x], it can be verified that 8(x)D[x] and
8.(x) have p(x}D[x] as the bound. (see [2],p.39) So B(x)
and each 8,(x) are similar. In particular, deg 8(x)=deg
8.(x) for i=2,.., k. Moreover, since deg B(x)=m and
deg p(x)=mk, we have h=*k.

Now consider the given irreducible decomposition p(x)=
&1 (%)... g,(x) in the assumption. Then obviously =k and
each g.(x)D[x] has the bound p(x)D[x]. So each g,(x) is
similar to B(x). Of course deg g.(x)=m is the smallest
positive integer such that F[x1/(p(x)) is F-embedded in
Mat, (D). So we prove (a) and (b).

For (c), recall that the bound of each g, (x)D[x] is
Pp(x)D[«]. Since p(x) isirreducible in F{x], D[x]/p(x)
D[x] is D[x]~isomorphic to ®3 D[x]/g.(x)D[x] by [1,
Theorem 20, p.45].

Finally for (d), let I be the ideal of polynomial f£(x)
in D(x] such that f(#)=0. Then p(x) is in I and so 7 is
a non-zero two-sided ideal of D[x]. Hence by Lemma 1
there exists a monic polynomial fo(x) in F{x] such that
I=Ff(x)D[x]). But since p(x) is irreducible in F{x7], we
have p(x)=so(x) and so I=p(x)D[x]. Hence p(x) is the
minimal polynomial of # and the proof is completed.
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Observing Theorem 3 that every irreducible factor g(x)
of p(x) has the same degree m which is the least posi-
tive integer such that F[«](C_Mat,(D) as F- algebras, we
get following immediately. '

CoroLLary 4. [3, Theorem 1.5] Let D be a division ring
with the center F' and let p(x) be an irreducible polyno-
mial in Flx]. If p(d)=0 for some element 4 in D, then
p(x) splits into linear factors in D{x] and p(x) is the
minimal polynomial of 4.

Proor, In this case since F[#](ZD, we have m=1.Hence
each g.(«x) is linear in any irreducible decompostion of p(x).

CororLary 5. Let D be a division ring with the center F
and let p(x) be an irreducible monic polynomial in F[x].
If deg p(x) is prime, then either p{x) is irreducible in
D[x] or p(x) splits into linear factors in D[x].
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