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Abstract

For the polymatroidal network, which has set-constraints on arcs, solution procedures to get the
weighted maximal flows are investigated. These procedures are composed of the transformation of the
polymatroidal network flow problem inte a polymatroid intersection problem and a polymatroid inter-
section algorithm, A greedy polymatroid intersection algorithm is presented, and an example problem is
solved. .

The greedy polymatroid intersection algorithm is a variation of Hassin’s. According to these proce-
dures, there is no need to convert the primal problem concerned into dual one. This differs from the pro-
cedures of Hassin, in which the dual restricted problem is used.

1. Introduction

In the classical network flow model, flows are constrained by the capacities of individual arcs. A
generalization of this classical model is to constrain the flows by the capacities imposed on the sets of
arcs divected into and out of each node. For this generalized network flow model, the theory of the
polymatroid optimization is very useful. Lawler and Martel [1] introduced the concept of polymatroid-
al flows generalizing polymatroid intersections and network flows. They also developed an augmenting
path method for the determination of maximal polymatroidal flows [2]. Hassin [3] investigated the
minimum cost network flow problem with set-constraints where each node has two polymatroids, one
constrains flows entering the node, and the other constrains flows leaving it. He presented an algorithm
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taking advantage of the dual restricted problem.

This paper is mainly concerned with procedures computing the maximal flows in the weighted net-
works with set-constraints. Therefore the problem of concern is a maximal flow problem, which is hasi-
cally equivalent to the problem in {3] and a generalization of the one in [2]. The computing procedures
are as follows: This maximal flow problem is transformed into a polymatroid intersection problem by
the method of Zimmermann [4], and a polymatroid intersection algorithm is applied to get the optimal
flows.

In section 2, some preliminaries of the polymatroid are introduced and the polymatroidal network
flows are defined. Section 3 presents a greedy polymatroid intersection algorithm. In section 4, an
example problem is solved with the Zimmermann’s transformation method and the greedy polymatroid
intersection algorithm presented in section 3.

2. Polymatroidal Network Flows

A polymatroid P (E, p) is defined by a finite set of elements E and a rank function p:2E = R+U{°Oi
satisfying the properties

p($)=0, (2.1)
p(X)<p(Y),X C Y CE, (2.2)
PXUY)+p(XNY)<p(X)+p(Y), XTE YCE. (2.3)

Inequalities (2.2} state that the rank function is nondecreasing and inequalities (2.3) assert that it is
submodular. A vector x € Rf will be said to be independent of the rank function p if

x(S)<p(8) (2.4)

for ail § C E.

Let the set of all independent vectors be denoted by V. For two polymatroids P, (E, p;) and P,
(E, p3), avector x €V, NV, is called a polymatroid intersection.

For a digraph G (N, A) with the node set N, containing a source s and a sink t, and with the arc set A,
we relate two capacity functions, o and Bj, to each node j. Each function o (ﬁj) satisfies (2.1) — (2.3}
with respect to the sets of arcs 0 (Ij) directed out from (into) node j. Then, Plj (Oj, aj) and Paj (I,
6j) are polymatroids and we call this digraph 2 “polymatroidal network™. Polymatroidal network flows
are an assignment of real numbers not greater than the arc capacities to the sets of arcs of a polymatroid-
al network,

Let the vector x denote also the polymatroidal network flows, and

xp)=0,
x(8)= 2 x(e)0F SCA.
c€S

Polymatroidal network flows are said to be feasible if they are independent of both o; and §; for all node
j, and x (Oj) =x (Ij), j # s, t. This paper deals with computing procedures to get feasible polymatroidal
network flows so that the total weight of the flows is maximal,



3. Polymatroid Intersection Algorithm

As mentioned in section 2, polymatroidal network flows are defined in a digraph G (N, A) by as
many polymatroids as 2 | N | By the way, Zimmermann [4] provides an excellent method to transform
this polymatroidal network flow problem into an equivalent polymatroid intersection problem. As the
feasible solution of the polymatroid intersection problem transformed provides feasible polymatroidal
network flows, it will be enough for us to solve a polymatroid intersection problem to get optimal flows
of a polymatroidal network.

Now the remaining part of this section is the description of a greedy algorithm, which is a variation of
the greedy algorithm appeared in Hassin {3]. Recently, Frank [5] developed a primal-dual method for
solving this type of problem.

For two polymatroids, P; (E, p,) and P, (E, p, ), the polymatroid intersection is equivalent to the
following linear program:

maximize PR ES (3.1)
subject to
0<x(S)<p(S) (3.2)
0<x(S)<p2(8) (3.3)

where c; is the weight of an element e; ©E and 8 C E. (Note that ¢; and x; are used instead of c{e;) and
x(ej) respectively )

We consider a subproblem of (3), composed of (3.1) and (3.2), and assume ¢; = ¢y = ... ZC) g ]
Let

X = {Pl(Fl) ,t=1
g1 (F)—p(F_).t=2, . |E]

where F; = fey,..., e} . Then x, is the greedy solution of the subproblem if ¢ 2 0.
Now (3)is split into two subproblems, (4) and (5) given as,

maximize = v (4.1)
e;E

subject to
0<x(S)<p(8), YSCE (4.2)

and

maximize £ v (5.1}
e;€E

subject to
0<x(S)<py(S), VSCE (5.2
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for some pair of vj and v{ such that v; + vj = ¢;. Here we notice a property that a vector x which is
optimal to both (4) and (5) is also optimal to (3). The following algorithm is based on this property.

A Greedy Polymatroid Intersection Algorithm

Let x* denote the optimal solution of 3).

step1.Setv=c,v'=0,x®P=0andn=1.
step 2. Find a greedy solution x™ of (4).

If x ™ is also feasible to (5), x* = x™ and stop.
Else,go to step 3.

step 3. Check if x® = x®1),
If the equality holds, go to step 4.
Else, there exists M C E such that x (M) > p,(M). Equaily decrease v; and increase v; for every
e; € M until v; (or v;), ¢; € M, becomes either zero or equals to some v; (or v;), ¢; § M. Let n =
n + 1 and return to step 2.

step 4. Find a greedy solution x®) of (5) and x* is determined as follows. -
First, for e; such that vj' >0, xjf' = x}“r).
Secondly, for ¢; € S & E, where S contains both e; such that v; = 0 and € such that vj' >0,
increase x{™ so far as x (S)< p1(S) and x {8) € p1(8), ¢; € §', to obtain x{.
Finally, for e; € T € E, where T contains only e; such that v; =0, = xi(“)‘

This algorithm is making use of the primal solutions of (4) and (5). So, for the polymatroid inter-
section problem transformed from the polymatroidal network flow problem by the method of Zim-
merman [4], this yields optimal solution without any resort to the dual problem. This differs from
Hassin [3] where the dual restricted problem is used. In the next section, and an exampie problem will

be solved to illustrate these computing procedures.

4. An Example Problem

Fig. I is an example of the polymatroidal network G (N, A), where the numbers on the arcs are arc-
weights. Let the flow capacities leaving the nodes be

X3 3, %5, S 4, x5y H X, S5,
X,z 4,

X23 3, X4K 5, X3 +X9q <6,
Xn €3, X3y S5, Xz tXap €7,
Xaz 52, %44 K3, Mgy +Xg¢ 54,

and the capacities of flows entering the nodes be

XSI €3, X1 42, xS] + X5 €4,
Xgp S4, X2 S, X, %12 €7,

Xa3 K3, X3 £2, Xo3 T X3 <35,



X4 SS,
X4 K3, %3, €5, %y, txa 7.

Fig. 1. A Polymatroidal Network G (N, A)

We assume that each flow on the arcs is nonnegative. The objective function is

maximize 2Xg; +3Xg, + 5X13 + Xo3 + 6Xgg + 3xgq + X4, + %43 +4x,,
st $2 3t £

For node 2,

02 = [(2', 3)3 (2, 4)s {(2? 3)= (2: 4)} ]s I‘Z = [(ss 2)3 (I E] 2); {(S, 2)3 (1 1 2)} ]
@ (2,3)=3,0,(2,4) = 5,0, (2, 3), (2, 4} =6,
HZ(S’ 2) = 4; 32 (132) = 4, .82 {(S! 2)7 (]a 2)} = ?a

wher (i, j) is an arc from node i to node j, and @ (i, j}is used instead of « [(i,j)} . The descriptions of
&, § for the other nodes are omitted.

A bipartite digraph Fig. 2 is the one transformed from Fig. 1 by the method of Zimmermann [4) . In
Fig. 2,

23(2,2)=6,05(2,3)= 3, 05(2,4") = 5, o} {2,3Y,2,4Y) =6,
o {(2,2, 23) 2,4 =6,

B2(2Y=4.4 (1,2)=4,8,{6,2), Q, 2} =6,

B202.2.(5, 2, (1,2} =6,

where o' and §' are the new capacity functions in place of wand 8.



The two polymatroids for which we are to deiermine the polymatroid intersection are P, (A, p;)
and P; (A, p,), where

pi(S)= = o(SNO)+ea,(SNO,),
ieNg

p2(8)= = B(SNIL)+B(SNI,),
iENo

SCA Ny =N— {s,1}

P g W N

s+ added arc

Fig 2. Transformation of Fig. 1.



By the algorithm in section 3,

4 -
@ = (X43, Xaq, X24, X12, %31, X3¢ X520 X515 X23 )

=(2,2,5,4,3,2,41,1),
@ = x®
Mo

X

(xﬁs X1z, st, X3, Xsl)

=(4,4,2,2,2),

increase X453 s0 that X435 = 2,

*_ * * ® % & * & * *
X = (Xgy, Xgp» X12: X23, X24, X31, . Xy, Xa3, X41)

=(2,2,4,2,4,2,2,2,2).

5. Concluding Remarks

The computing procedures presented in previous sections are composed of the transformation of the
polymatroidal network flow probiem into a polymatroid intersection problem and a polymatroid in-
tersection algorithm. The greedy polymatroid intersection algorithm in section 3 is a variation of Hassin
[31. In using these procedures, there is no need to convert the primal problem concerned into dual
one. This differs from [3], in which the dual restricted problem is used.
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