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ON OSCILLATIONS OF PERTURBED SECOND ORDER 

DIFFERENTIAL EQUATION 

By H. EI-Owaidy and A. A. S. Zagrout 

A perturbed second ordcr linear differential cquation is considcred. A criteria 

conccrning the oscillatory behaviour of solulions of the perturbed cquation based 

on the perturbing function and thc solutions of the associated unperLurhcd 

equatlOn IS glven 

1. In lhis paper we shall considcr thc lincar differenlial cqualions 

( p(l ) z ’(1))’+q(l) x(t) =0 (1) . ’ =d/dl 

( p(1) Yτ1))' +q(l) y (t) = f (l) (2) 

where p, q and f are rca!-\'alued continuous functions on [a, ∞) whcre a is 

anyreal numbcr. p(t) >O for 1>0. f(l )~ O on [a . ∞) . 

The problem of dctcrmining o3cillation criteria for second ordcr linear diffcr 

ential equations has rcccivcd a great dcal of attention in the last twenty 

years-scc for cxample [IJ . [2J . [3J . (4J. [5J 
Bcfore proceeding , \vc shall require some c1 efin itions and lemmas 

DEFIN lTJON 1. A solu니on of (1) (or (2)) is said lO be nonosci llatory on 

(a. ∞) if it has only a finile numbcr of zcrOs on (a ,. ∞) for some a,> a and 

is oscillatory if it has an in1Ïnite number 0 1' zcros on [a l' ∞) . Equalion (1) 

(or (2)) is oscillatory if it has at least one oscillatory solution on (a. ∞J and 

is nonosci llatory if all solutions are nonoscillatory. 

I t is wcll known from (4] that if x1 and x2 are solution basis for cquation 

(1) . thcn the general solution of (2) is given by: 

y(t) =C,x, (1) + C2x2( t) + Yp' (:1) 

where C 1 and C2 are a rbitrary constants and 

" '( f(s)W .. (.<) 
Y.= E: x ;Ct) J W ( . • )(.\ t= l 4 W(Xl , x2) (S) 

w here WCXl' " 2) (1) is the quasi-Wronskian of the solutions ", and "2 and 
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W ; (1) is the determinant obtained from W (" I' "2) (1) by rcplacing the illr 

column with vcctor [0, 1] T , i = I , 2, i, e. 

1%1 -"'2 
W (" l' " 2)(1) =1 .: . . : .. 1="1 Þ"2’ -X2 þX j ’ = K , on [a , ∞). 

I Þ"1 ’ ÞX2’ l 

DEFINITION 2. The solution basis "1 and " 2 of (1) is ca lled a 1!ormalizeá 

solαtion basis if K = l and W is called a 1zormaUzed Wronskian. 

From the abovc definitions it fo llows that if "1 and "2 is a normalized solution 

basis for cquation (1), then equation (3) takes thc form 

2 , 
y(l)=걷，，;(1) 1 C; + I f (s) W ;Cs)ás 1 (4) 

∞ 

LEM써MA. lf f끼끼[1/써p(찌삐‘M삐씨1)씨)]삐] 
0 

(1) is oscillalory. ([4i) 

a 

Supposition A: Let q(I)>O on [a , ∞). lf thcrc is a nonosci llatory solution 01 
(2) such that sgn y(l)영sgn f (l) for largc I thcn (1) is nonoscillatory. 

LEMMA 1. lf "1 (1) and "2 (1) be a (normalized ) solulion basis for eqκation 

(1), IIIen W 1 and W 2 are a (normalized ) solulion basis for (1). 

PROOF. Thc proof is trivial since W 1=-"2 and W 2=" ,. 

THEOREM 1. Aw‘me q(l)> O. lf eq“alion (1) is oscillalory, 111αt all n01Z oscil­

lalory SOz.씨ons of equalion (2) are of IIIe same sign. M oreover 1I f(/)잊o for 

large 1, IIlen all nonoscillalory soz.씨ons 0/ equation (2) are 01 the same sign as 

f (l ) . 

PROOF. Lct y(l) and z(1) bc any two nonosci llaLOry sol ut ions of equation (2). 
Since cvcry solution of cua tion (1) is oscillaLOry. by hypothcses, y-z is an 

oscillatory solution of (1). Assume sgn y ;6 sg/l z for largc 1, then y-z is 
nonoscillatory solution of (1) for large 1, which is a contrad iction. Thus sgn 

y=sgη z. Assume sgn y;6sgn f. then by sulψosition A, equation (1) is non­
osocillatory, which is agaio a contradiction. Thus nonoscillalory solutions of 

(2) arc of thc same sign as f (,,) . This completes thc proof. 
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THEORE~l 2. ASSI. :I‘ e x(l) is all 05cillalory 5011llioll o[ (1) and y (l) i5 a 1101105' 

clllatoυ sollltioll 따 (2) . The“ thcrc exisis a scqucnccs {tj}' t j→∞ a5 ，→∞ sllch 

tl/al ( x Þ y ’ -yþx’ )(õ) =0 [Or all i 

PROOF. Thc agrccmcnt is sim ilar lO lhc proof of S t.u rm scparalion thcorcm 

and thcrcforc is omiucd. 

THEORE~l 3. Let all 50luli01l5 o[ (2) be 1l01l05cillatory alld o[ tlze 5ame 5igll . 

J[ x(1) 50lιlioll o[ (1) 5ιch that .li~_ i1l[ þ(I)> O. tlzen Ihe þarliC!llar 50lulioll yp 
t-∞ 

O[ (2) lza5 the ρroþerly Ihal lim l y.(1) 1 =∞. 
I~ 

PR∞F. Let y ,(I) = :<(I) +y/l) denote any nonoscillatory solution of (2) . Since 

all solutions of (2) are of the samc sign on [a. ∞). for cach i thcre exisls a 

point li such that Yi (l) 7"O on [ti• ∞). Without 1055 of generality. 、.vc can assumc 

that y,(I)> O on [ti' ∞) for all i. Then it is clcar that y/I)> -C:<(t) on [t,’ 
∞). and hcncc Iy/I) 1> 1:<(1) 1. for large 1. Sin∞ lim inf 1:<(1) 1>0 앓 t→∞. lt 

follows lhat IYþ(1) 1→∞. as t→∞ and the rcsult follows 
l 

T까‘'H뼈{ 

U 

/las at 1Jl usL (.시lC 1lO1tOsci/latory so[ution. 

PiWOF. lt follo“ 5 from lhc varialion of paramctcrs (conSlanlS) formula and 

hYPOlhcscs ‘ lhat a ll so lutions of (2) are boundc:l. ..\ ssumc that yl and y2 arc 

any solu lions of (2) , and hcncc thcir diffcrcncc Yt- Y2= x (t ) is a solulion of 

(1) . Thus írom cq ua tion (2) 、ve oblain 

y，c þy ，γ -y ， ( þYz’)’ =(y'-Y2) [ (1) (5) 

The lcft hand sidc of (5) can bc “rrittcn as [y ,(þY}-Y2(þy,)]' and hcncc 

equation (5) takcs thc form 

[y, (ÞY2') - y2( ÞY,’ )]' = :<(1) [ (1) (6) 

from hypolheses on :<(1) and [ (t) . it follows that the lcft hand side of (6) has 

a limit as t-+∞. To prove lhat cquation (2) has at most one nonoscillalory 

solution: On lhe contrary assume that thcre ex ists two distinct nonosc씨atory 

solutions y, and y2 of cquation (2). Let ", =y,-y2 and :<2(1) bc a normalized 

solution basis for cquation (1) i. e. W(" ,. :<2) (I )= 1=C:<, Þ:<z’ - " 2Þ:<,')' Lct YJ 

=Y2+X2 and z(t)= tan-l (yjYj) lhen 
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’ ? z(l) = [y, PYJ' - YJpy,'J / P(y; + y j). (7) 

Since y,(I) is nonoscillalory solution of (2) , by assumplion , lhcrc CXiSlS Il> O 

such lhal y;> O for 까l' which means lhat z(1) and , conscqucnlly , z(l) arc 

wcll dcfincd for all 1> 1,. Thc numcralor in lhe right ha nd sidc of (7) can bc 

rc‘vnttcn as 
[y , PYJ' - y j PY ,') = [z, px2' -Z2 PX ,') + [z,-zJPY2' -Y2P[x ,-x/J' 

Assume x (1) = x, -낀 nOling lhal x, and x, are norma1izcd Solulion baris of (1) 

and using lhcorem 2, it follows lhal (YPYj' -Y3ÞY' ’) (1) has thc limit 1 as 1→∞. 

lf 、、 c choosc 1,>1, 50 lhat 

(Y'ÞYJ'-Y3 ÞY' ’)>+ for 1>1_ 

lhcn cquation (7) lakcs lhc ‘ Or n 

Z(t)> l / 3 P(y:+yi> 0. t〉tι

Thus z(l) is slriclly monO lOne for 1> 1,. 

ln addition. sincc Y, and Y3 arc boundcd , there cxists a posilive number M 

2. 2 such lhal Yî+ y;< M and il follows lhat z (l)> l/3P M and hence 

z(l)>z(I ，) +견숨rfds (8) 
1, 

Sincc lhe in l.egral on thc right of (8) divcrgcs and hcncc Z (I) bccomcs unboundcd 

as 1→∞. This implics lhal bolh y ,(1) and Y3(t) must oscillatc which contradicls 

that Y, is nonoscillatory Solulion of (2). 

King Abdu l-Aziz Univcrsity 
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