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ON OSCILLATIONS OF PERTURBED SECOND ORDER
DIFFERENTIAL EQUATION

By H. El-Owaidy and A.A.S. Zagrout

A perturbed second order linear differential equation is considered. A criteria
concerning the oscillatory behaviour of solutions of the perturbed equation based
on the perturbing function and the solutions of the associated unperturbed
equation is given.

1. In this paper we shall consider the linear differential equations
(p(®) 2" (D)) +q@) x(H)=0 (1) ,"=d/dt
(o) YD) +q® O =D @
where p, ¢ and f are real-valued continuous functions on [g, o0) where a is
anyreal number, p(t)>>0 for {20, f({)70 on [a, o=).

The problem of determining oscillation criteria for second order linear differ-
ential equations has received a great deal of attention in the last twenty
years-see for example [1], [2], [3], (4], I[5].

Before proceeding, we shall require some deflinitions and lemmas:

DEFINITION 1. A solution of (1) (or (2)) is said to be nonoscillatory on
[@, =o) if it has only a finite number of zeros on [a;, ©o) for some @;>>a and
is oscillatory if it has an infinite number of zeros on [e,, o). Equation (1)
(or (2)) is oscillatory if it has at least one oscillatory solution on [a, =] and
is nonoscillatory if all solutions are nonoscillatory.

It is well known from (4] that if x, and x, are solution basis for cquation
(1), then the general solution of (2) is given by:
O =Cx (D+Cx D+ 3y, (

where C, and C, are arbitrary constants and

i

_ 2 FOW(s)
yp",);;’ict) a[ W(x,, xz)ZsTds'

where W(x,, x,) (#) is the quasi-Wronskian of the solutions x, and x, and
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W, () is the determinant obtained from W(x, x,)(¢) by replacing the 7,
column with vector [0, 1)7, /=1, 2, Le.
x'?

*
Wz, 2)O= ~ °
pr p

; =z px, —x,px,"=K, on [a, oo).
2

’

DEFINITION 2. The solution basis #, and x, of (1) is called a normalized
solution basis if K=1 and W is called a normalized Wronskian.

From the above definitions it follows that if x, and x, is a normalized solution
basis for equation (1), then equation (3) takes the form

y(®) =éx,-(t)[c,.+}f(s) W (s)ds) @

LEMMA. If ] [1/p))dt=co and if all solutions of equaiion (1) are bounded, then
0

(1) is oscillatory. ([4])

Supposition A: Let ¢(#)>>0 on [e, o). If there is a nonoscillatory solution of
(2) such that sgn y(£)#sgn f(t) for large ¢ then (1) is nonoscillatory.

LEMMA L If x,(?) and x, () be a (normalized) solution basis for equation
(1), then W, and W, are a (normalized) solution basis for (1).

PROOF. The proof is trivial since W;=—x, and W,=x,.

THEOREM 1. Assume q(#)>0. If equation (1) is oscillatory, then all nonoscil-
latory solutions of equation (2) are of the same sign. Moreover if f(t)70 for
large ¢, then all nonoscillatory solutions of equation (2) are of the same sign as

f@.

PROOF. Let ¥(#) and 2(¢) be any two nonoscillatory solutions of equation (2).
Since every solution of euation (1) is oscillatory, by hypotheses, y—z is an
oscillatory solution of (1). Assume sgn y#sgn z for large ¢, then y—2z is
nonoscillatory solution of (1) for large #, which is a contradiction. Thus sgn
y=sgn z. Assume sgn y7#sgn f, then by supposition A, equation (1) is non-
osocillatory, which is again a contradiction. Thus nonoscillatory solutions of
(2) are of the same sign as f(x). This completes the proof.
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THEOREM 2, Asswzme xz(t) is an oscillatory solution of (1) and y(t) is a nonos-
ciliatory solution of (2). Then there exisls a sequences \tj, t—o0 as i—oo such

that (x p y'—ypx')(8,)=0 for all i.

PROOF. The agreement is similar to the proof of Sturm separation theorem
and therefore is omitted.

THEOREM 3. Let all solutions of (2) be nonoscillatory and of the same sign.
If (%) solution of (1) such that lim inf p(1) >0, then the particular solution 2,
{—c0

of (2) has the property that lim| y,(£)|=oo.
1—co

PROOF. Let y,.(t)=x(t)+yp(t) denote any nonoscillatory solution of (2). Since
all solutions of (2) are of the same sign on [@, o), for each i/ there exists a
point #; such that y;(#)70 on [¢;, o). Without loss of generality, we can assume
that y,(#)>>0 on [{;, <o) for all . Then it is clear that yp(t)> —Cx(¢) on [¢,
oo), and hence {y,()|> 12|, for large £. Since lim inf |x(£)|>0 as #—eo, it

follows that | yp(t)i—rcx’, as t—co and the result follows.
1

THEOREM 4. If j [1/p(®)] dt=co and solutions of (1) are bounded, then (2)
V]

has at most one nonoscillatory solution.

PROOF. It follows from the variation of parameters (constants) formula and
hypotheses, that all solutions of (2) are bounded. Assume that y, and y, are
any solutions of (2), and hence their difference y,—y,=x(f) is a solution of
(1). Thus from equation (2) we obtain.

¥L0y, ) —3,(035) =Cy—3,) F®O ()

The left hand side of (5) can be written as [y,(2y,)—y,(#y))]” and hence

equation (5) takes the form

(3,09, =9,(03,D1 =2() fD) ®)

from hypotheses on x(¢) and f(¢), it follows that the left hand side of (6) has
a limit as /—oco, To prove that equation (2) has at most one nonoscillatory
solution: On the contrary assume that there exists two distinct nonoscillatory
solutions y, and y, of equation (2). Let x;=y,—y, and z,(#) be a normalized
solution basis for equation (1) iL.e. W(x, 2,)()=1=(x px,"—x,px,). Let y,
=y,+%, and z(t)=tan_l(y;/yi) then
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2= (3,835 =309, 1/ P(3, +5). @
Since y,(#) is nonoscillatory solution of (2), by assumption, there exists ¢,>0
such that yf>0 for £2>¢,, which means that z(f) and, consequently, z(f) are
well defined for all £>£,. The numerator in the right hand side of (7) can be
rewritten as
(3035 —3509) =[x 02, —x,0%') + (2,2 10y, —y, 0 [x, — )]’

Assume x(#)=x —x, noting that x, and xz, are normalized solution baris of (1)
and using theorem 2, it follows that (ypy,—y;y,)(#) has the limit 1 as t—co,
If we choose #,~¢, so that

(n Pyj-yapyl'»—._‘; for 121
then equation (7) takes the .ora
2(O>1/3p(yi+y>0, t>1,
Thus z(#) is strictly monotone for #>%..
In addition, since y; and y, are bounded, there exists a positive number M

such that yf-i—yg(M and it follows that z(#)>>1/3PM and hence

t
2O>2() +—5pyrfds @®

y
Since the integral on the right of (8) diverges and hence Z (#) becomes unbounded
as t—oo, This implies that both y,(#) and y3(#) must oscillate which contradicts

that y, is nonoscillatory solution of (2).
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